All Projects → kakaobrain → Autoclint

kakaobrain / Autoclint

Licence: apache-2.0
A specially designed light version of Fast AutoAugment

Programming Languages

python
139335 projects - #7 most used programming language

Projects that are alternatives of or similar to Autoclint

Fast Autoaugment
Official Implementation of 'Fast AutoAugment' in PyTorch.
Stars: ✭ 1,297 (+658.48%)
Mutual labels:  convolutional-neural-networks, cnn, image-classification, automl, automated-machine-learning
Pba
Efficient Learning of Augmentation Policy Schedules
Stars: ✭ 461 (+169.59%)
Mutual labels:  convolutional-neural-networks, image-classification, automl, automated-machine-learning
Deep Learning With Python
Deep learning codes and projects using Python
Stars: ✭ 195 (+14.04%)
Mutual labels:  convolutional-neural-networks, cnn, image-classification
Transfer Learning Suite
Transfer Learning Suite in Keras. Perform transfer learning using any built-in Keras image classification model easily!
Stars: ✭ 212 (+23.98%)
Mutual labels:  convolutional-neural-networks, cnn, image-classification
Image classifier
CNN image classifier implemented in Keras Notebook 🖼️.
Stars: ✭ 139 (-18.71%)
Mutual labels:  convolutional-neural-networks, cnn, image-classification
Keras transfer cifar10
Object classification with CIFAR-10 using transfer learning
Stars: ✭ 120 (-29.82%)
Mutual labels:  convolutional-neural-networks, cnn, image-classification
Pytorch Image Classification
Tutorials on how to implement a few key architectures for image classification using PyTorch and TorchVision.
Stars: ✭ 272 (+59.06%)
Mutual labels:  convolutional-neural-networks, cnn, image-classification
Autogluon
AutoGluon: AutoML for Text, Image, and Tabular Data
Stars: ✭ 3,920 (+2192.4%)
Mutual labels:  image-classification, automl, automated-machine-learning
Rmdl
RMDL: Random Multimodel Deep Learning for Classification
Stars: ✭ 375 (+119.3%)
Mutual labels:  convolutional-neural-networks, cnn, image-classification
Deepmodels
TensorFlow Implementation of state-of-the-art models since 2012
Stars: ✭ 33 (-80.7%)
Mutual labels:  convolutional-neural-networks, cnn, image-classification
Efficientnas
Towards Automated Deep Learning: Efficient Joint Neural Architecture and Hyperparameter Search https://arxiv.org/abs/1807.06906
Stars: ✭ 44 (-74.27%)
Mutual labels:  convolutional-neural-networks, image-classification, automl
Tf Mobilenet V2
Mobilenet V2(Inverted Residual) Implementation & Trained Weights Using Tensorflow
Stars: ✭ 85 (-50.29%)
Mutual labels:  convolutional-neural-networks, cnn, image-classification
Iresnet
Improved Residual Networks (https://arxiv.org/pdf/2004.04989.pdf)
Stars: ✭ 163 (-4.68%)
Mutual labels:  convolutional-neural-networks, cnn, image-classification
Deepway
This project is an aid to the blind. Till date there has been no technological advancement in the way the blind navigate. So I have used deep learning particularly convolutional neural networks so that they can navigate through the streets.
Stars: ✭ 118 (-30.99%)
Mutual labels:  convolutional-neural-networks, cnn
Deepgaze
Computer Vision library for human-computer interaction. It implements Head Pose and Gaze Direction Estimation Using Convolutional Neural Networks, Skin Detection through Backprojection, Motion Detection and Tracking, Saliency Map.
Stars: ✭ 1,552 (+807.6%)
Mutual labels:  convolutional-neural-networks, cnn
Amla
AutoML frAmework for Neural Networks
Stars: ✭ 119 (-30.41%)
Mutual labels:  image-classification, automl
Petridishnn
Code for the neural architecture search methods contained in the paper Efficient Forward Neural Architecture Search
Stars: ✭ 112 (-34.5%)
Mutual labels:  image-classification, automl
Auto ml
[UNMAINTAINED] Automated machine learning for analytics & production
Stars: ✭ 1,559 (+811.7%)
Mutual labels:  automl, automated-machine-learning
Lenet 5
PyTorch implementation of LeNet-5 with live visualization
Stars: ✭ 122 (-28.65%)
Mutual labels:  convolutional-neural-networks, cnn
Nni
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
Stars: ✭ 10,698 (+6156.14%)
Mutual labels:  automl, automated-machine-learning

AutoCLINT

KakaoBrain pytorch tensorflow autocv 1st place autocv2 1st place HitCount

Automatic Computationally LIght Network Transfer

A specially designed light version of Fast AutoAugment is implemented to adapt to various tasks under limited resources.

This is our solution to NeurIPS 2019 AutoDL Challenges. We won the 1st place in the final learderboards in both AutoCV and AutoCV2 Challenges.

AutoCV/AutoCV2 Challenge Introduction

Fully Automated Image (and Video) Classification without ANY human intervention

Despite recent successes of deep learning and other machine learning techniques, practical experience and expertise is still required to select models and/or choose hyper-parameters when applying techniques to new datasets. This problem is drawing githincreasing interest, yielding progress towards fully automated solutions. In this challenge your machine learning code is trained and tested on this platform, without human intervention whatsoever, on image or video classification tasks you have never seen before, with time and memory limitations. All problems are multi-label classification problems, coming from various domains including medical imaging, satellite imaging, object recognition, character recognition, face recognition, etc. They lend themselves to deep learning solutions, but other methods may be used. Raw data is provided, but formatted in a uniform manner, to encourage you to submit generic algorithms.

Methods

We employ a network transfer strategy and implement a light version of Fast AutoAugment for the fast adaptation and the efficient search of data augmentation policies.

Network Transfer

The AutoCV Challenges are given limited memory and computational resources. Thus, we considered a small size of architecture that could use the pre-trained models that were transferred.

We have discovered the optimal hyperparameters and architectures to get the best performance in five minutes from five public data sets (Munster, Chuckey, Pedro, Decal and Hammer). In this process, no data augmentation is used.

Due to the variability in image size (median shape 28x28x1 for munster vs. 576x944x3 for decal) the input tensor size of network must be automatically adapted for each dataset to allow for adequate aggregation of spatial information and to keep the aspect ratio of original image. We automatically adapt these parameters to the median size of each dataset, so that the network effectively trains on entire datasets. Due to time constraints, we do not increase the input tensor volume (without channels) beyond 64^2. If the median shape of the dataset is smaller than 64^2 then we use the median shape as original input.

Munster Chucky Pedro Decal Hammer Kreatur Katze Kraut
data type image image image image image video video video
original median shape 28x28x1 32x32x1 203x74x3 576x944x3 300x400x3 46x60x80x3 46x120x160x1 46x120x160x1
input tensor shape 28x28x1 32x32x1 128x48x3 48x64x3 48x64x3 8x48x64x3 8x48x64x1 8x48x64x1

Fast AutoAugment

Fast AutoAugment learns augmentation policies using a more efficient search strategy based on density matching. Ideally, Fast AutoAugment should be performed automatically, allowing the training data to adapt to test data.

We modify the search space and implement a light version of Fast AutoAugment algorithm to surmount the restricted computational resources.

As Fast AutoAugment, we search the augmentation policies that match the density of train data with density of augmented valid data. We deviate from the original version in that we replace 5-fold with single-fold search and use random search (within subset of searched policy in original) instead of TPE algorithm.

AutoCV Results

Public

V1.XLARGE

  • experiment environment: BrainCloud V1.XLARGE Type (NVIDIA Tesla V100 1GPU, 14CPU, 122GB)
metrics Munster Chucky Pedro Decal Hammer
ALC 0.9421 0.8082 0.7948 0.8647 0.8147
2*AUC-1 0.9992 0.9297 0.9241 0.9233 0.8863
curves

P1.XLARGE

  • experiment environment: BrainCloud P1.XLARGE Type (NVIDIA Tesla P40 1GPU, 6CPU, 61GB)
metrics Munster Chucky Pedro Decal Hammer
ALC 0.9440 0.7835 0.7366 0.8353 0.8286
2*AUC-1 0.9977 0.9353 0.9214 0.9347 0.9142
curves

Private

  • experiment environment: CodaLab (NVIDIA Tesla P100 1GPU, 4vCPU, 26GB)
metrics beatriz Caucase Hippoc. Saturn ukulele
ALC 0.6756 0.7359 0.7744 0.8309 0.9075
2*AUC-1 0.8014 0.9411 0.9534 0.9884 0.9985
curves

AutoCV2 Results

Public (video only)

V1.XLARGE

  • experiment environment: BrainCloud V1.XLARGE Type (NVIDIA Tesla V100 1GPU, 14CPU, 122GB)
metrics Kreature Katze Kraut
ALC 0.8677 0.8613 0.6678
2*AUC-1 0.9613 0.9588 0.7365
curves

P1.XLARGE

  • experiment environment: BrainCloud P1.XLARGE Type (NVIDIA Tesla P40 1GPU, 6CPU, 61GB)
metrics Kreature Katze Kraut
ALC 0.8675 0.8757 0.6883
2*AUC-1 0.9587 0.9572 0.7559
curves

Private

  • experiment environment: CodaLab (NVIDIA Tesla P100 1GPU, 4vCPU, 26GB)
metrics Ideal freddy Homer Isaac2 Formula
ALC 0.8229 0.7516 0.3843 0.7064 0.7661
2*AUC-1 0.9605 0.9945 0.5500 0.9845 0.9661
curves

Final (blind)

  • experiment environment: CodaLab (NVIDIA Tesla P100 1GPU, 4vCPU, 26GB)
metrics Apollon loukooum Fiona Monica1 Kitsune
ALC 0.5593 0.9256 0.4074 0.4491 0.2132
2*AUC-1 0.8022 0.9978 0.5312 0.8617 0.2467
curves

Environment Setup & Experiments

$ apt update
$ apt install python3-tk
  • clone and init. the repository
$ git clone https://github.com/kakaobrain/autoclint.git && cd autoclint
$ # 3rd parties libarary
$ git submodule init
$ git submodule update
$ # download pretrained models
$ wget https://download.pytorch.org/models/resnet18-5c106cde.pth -O ./models/resnet18-5c106cde.pth
$ # download public datasets
$ cd autodl && python download_public_datasets.py && cd ..
  • run public datasets
$ # images
$ python autodl/run_local_test.py -time_budget=1200 -code_dir='./' -dataset_dir='autodl/AutoDL_public_data/Munster/'; cp autodl/AutoDL_scoring_output/learning-curve-*.png ./results
$ python autodl/run_local_test.py -time_budget=1200 -code_dir='./' -dataset_dir='autodl/AutoDL_public_data/Chucky/'; cp autodl/AutoDL_scoring_output/learning-curve-*.png ./results
$ python autodl/run_local_test.py -time_budget=1200 -code_dir='./' -dataset_dir='autodl/AutoDL_public_data/Pedro/'; cp autodl/AutoDL_scoring_output/learning-curve-*.png ./results
$ python autodl/run_local_test.py -time_budget=1200 -code_dir='./' -dataset_dir='autodl/AutoDL_public_data/Decal/'; cp autodl/AutoDL_scoring_output/learning-curve-*.png ./results
$ python autodl/run_local_test.py -time_budget=1200 -code_dir='./' -dataset_dir='autodl/AutoDL_public_data/Hammer/'; cp autodl/AutoDL_scoring_output/learning-curve-*.png ./results
$ # videos
$ python autodl/run_local_test.py -time_budget=1200 -code_dir='./' -dataset_dir='autodl/AutoDL_public_data/Kreatur/'; cp autodl/AutoDL_scoring_output/learning-curve-*.png ./results
$ python autodl/run_local_test.py -time_budget=1200 -code_dir='./' -dataset_dir='autodl/AutoDL_public_data/Katze/'; cp autodl/AutoDL_scoring_output/learning-curve-*.png ./results
$ python autodl/run_local_test.py -time_budget=1200 -code_dir='./' -dataset_dir='autodl/AutoDL_public_data/Kraut/'; cp autodl/AutoDL_scoring_output/learning-curve-*.png ./results
  • (optional) display learning curve
$ # item2 utils to visualize learning curve
$ wget https://www.iterm2.com/utilities/imgcat -O bin/imgcat; chmod 0677 bin/imgcat
$ bin/imgcat ./results/learning-curve-*.png

Authors and Licensing

This project is developed by Woonhyuk Baek, Ildoo Kim and Sungbin Lim at Kakao Brain. It is distributed under Apache License 2.0.

Citation

If you apply this library to any project and research, please cite our code:

@article{baek2020autoclint,
  title         = {AutoCLINT: The Winning Method in AutoCV Challenge 2019}
  author        = {Woonhyuk Baek and Ildoo Kim and Sungwoong Kim and Sungbin Lim},
  year          = {2020},
  eprint        = {2005.04373},
  archivePrefix = {arXiv}
}

References & Open sources

  1. Fast AutoAugment
  2. Pretrained models for Pytorch
  3. TorchVision models
  4. TQDM: Progress Bar for Python and CLI
  5. AutoCV/AutoDL startking kit
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].