wizardforcel / Data Science Notebook
📖 每一个伟大的思想和行动都有一个微不足道的开始
Stars: ✭ 196
Programming Languages
shell
77523 projects
Projects that are alternatives of or similar to Data Science Notebook
Seaborn Tutorial
This repository is my attempt to help Data Science aspirants gain necessary Data Visualization skills required to progress in their career. It includes all the types of plot offered by Seaborn, applied on random datasets.
Stars: ✭ 114 (-41.84%)
Mutual labels: data-science, data-analysis, pandas, numpy
Ai Learn
人工智能学习路线图,整理近200个实战案例与项目,免费提供配套教材,零基础入门,就业实战!包括:Python,数学,机器学习,数据分析,深度学习,计算机视觉,自然语言处理,PyTorch tensorflow machine-learning,deep-learning data-analysis data-mining mathematics data-science artificial-intelligence python tensorflow tensorflow2 caffe keras pytorch algorithm numpy pandas matplotlib seaborn nlp cv等热门领域
Stars: ✭ 4,387 (+2138.27%)
Mutual labels: data-science, data-analysis, pandas, numpy
Data-Analyst-Nanodegree
Kai Sheng Teh - Udacity Data Analyst Nanodegree
Stars: ✭ 42 (-78.57%)
Mutual labels: numpy, sklearn, pandas, data-analysis
Mlcourse.ai
Open Machine Learning Course
Stars: ✭ 7,963 (+3962.76%)
Mutual labels: data-science, data-analysis, pandas, numpy
Data Science Hacks
Data Science Hacks consists of tips, tricks to help you become a better data scientist. Data science hacks are for all - beginner to advanced. Data science hacks consist of python, jupyter notebook, pandas hacks and so on.
Stars: ✭ 273 (+39.29%)
Mutual labels: data-science, data-analysis, pandas, numpy
Data Analysis
主要是爬虫与数据分析项目总结,外加建模与机器学习,模型的评估。
Stars: ✭ 142 (-27.55%)
Mutual labels: data-analysis, pandas, sklearn, numpy
Dat8
General Assembly's 2015 Data Science course in Washington, DC
Stars: ✭ 1,516 (+673.47%)
Mutual labels: data-science, data-analysis, pandas
Pandas Videos
Jupyter notebook and datasets from the pandas Q&A video series
Stars: ✭ 1,716 (+775.51%)
Mutual labels: data-science, data-analysis, pandas
Data Science For Marketing Analytics
Achieve your marketing goals with the data analytics power of Python
Stars: ✭ 127 (-35.2%)
Mutual labels: data-science, pandas, numpy
Andrew Ng Notes
This is Andrew NG Coursera Handwritten Notes.
Stars: ✭ 180 (-8.16%)
Mutual labels: data-science, pandas, numpy
100 Pandas Puzzles
100 data puzzles for pandas, ranging from short and simple to super tricky (60% complete)
Stars: ✭ 1,382 (+605.1%)
Mutual labels: data-analysis, pandas, numpy
Dtale Desktop
Build a data visualization dashboard with simple snippets of python code
Stars: ✭ 128 (-34.69%)
Mutual labels: data-science, data-analysis, pandas
Tensorflow Ml Nlp
텐서플로우와 머신러닝으로 시작하는 자연어처리(로지스틱회귀부터 트랜스포머 챗봇까지)
Stars: ✭ 176 (-10.2%)
Mutual labels: pandas, sklearn, numpy
Sweetviz
Visualize and compare datasets, target values and associations, with one line of code.
Stars: ✭ 1,851 (+844.39%)
Mutual labels: data-science, data-analysis, pandas
Rightmove webscraper.py
Python class to scrape data from rightmove.co.uk and return listings in a pandas DataFrame object
Stars: ✭ 125 (-36.22%)
Mutual labels: data-science, data-analysis, pandas
Spark R Notebooks
R on Apache Spark (SparkR) tutorials for Big Data analysis and Machine Learning as IPython / Jupyter notebooks
Stars: ✭ 109 (-44.39%)
Mutual labels: data-science, data-analysis, notebook
Ds Ai Tech Notes
📖 [译] 数据科学和人工智能技术笔记
Stars: ✭ 131 (-33.16%)
Mutual labels: data-science, sklearn, numpy
Python Cheat Sheet
Python Cheat Sheet NumPy, Matplotlib
Stars: ✭ 1,739 (+787.24%)
Mutual labels: data-science, pandas, numpy
Ml Cheatsheet
A constantly updated python machine learning cheatsheet
Stars: ✭ 136 (-30.61%)
Mutual labels: pandas, sklearn, numpy
Dtale
Visualizer for pandas data structures
Stars: ✭ 2,864 (+1361.22%)
Mutual labels: data-science, data-analysis, pandas
数据科学笔记
今天,你将开始新的生活。今天,你将爬出满是失败创伤的老茧。今天,你将重新来到这个世上,出生在葡萄园中,园中的葡萄任人享用。今天,你要从最高最密的藤上摘下智慧的果实,这葡萄藤是好几代前人的智者种下的。今天,你要品尝葡萄的美味,还要吞下每一粒成功的种子,让新生命在你心里萌芽。
数据科学家的道路,充满机遇,也有辛酸与绝望。失败的铜板数不胜数,叠在一起比金字塔还高。然而,你不会向他们一样失败,因为你手中持有航海图,可以迎你越过汹涌的大海,抵达梦中的彼岸。失败不再是你奋斗的代价,它和痛苦都将从你的生命中消失,失败和你就像水火一样互不相融。你不再向过去一样接受它们,你要在智慧的引导下,走出阴影,步入富足、健康、快乐的乐园。
Note that the project description data, including the texts, logos, images, and/or trademarks,
for each open source project belongs to its rightful owner.
If you wish to add or remove any projects, please contact us at [email protected].