All Projects → dusty-nv → Jetson Containers

dusty-nv / Jetson Containers

Licence: mit
Machine Learning Containers for NVIDIA Jetson and JetPack-L4T

Programming Languages

shell
77523 projects

Projects that are alternatives of or similar to Jetson Containers

Mars
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.
Stars: ✭ 2,308 (+934.98%)
Mutual labels:  pandas, scikit-learn, numpy
Cheatsheets.pdf
📚 Various cheatsheets in PDF
Stars: ✭ 159 (-28.7%)
Mutual labels:  pandas, scikit-learn, numpy
Data Science Complete Tutorial
For extensive instructor led learning
Stars: ✭ 1,027 (+360.54%)
Mutual labels:  pandas, scikit-learn, numpy
Machine Learning Alpine
Alpine Container for Machine Learning
Stars: ✭ 30 (-86.55%)
Mutual labels:  pandas, scikit-learn, numpy
Pymc Example Project
Example PyMC3 project for performing Bayesian data analysis using a probabilistic programming approach to machine learning.
Stars: ✭ 90 (-59.64%)
Mutual labels:  pandas, scikit-learn, numpy
Mlcourse.ai
Open Machine Learning Course
Stars: ✭ 7,963 (+3470.85%)
Mutual labels:  pandas, scikit-learn, numpy
Dask
Parallel computing with task scheduling
Stars: ✭ 9,309 (+4074.44%)
Mutual labels:  pandas, scikit-learn, numpy
AIPortfolio
Use AI to generate a optimized stock portfolio
Stars: ✭ 28 (-87.44%)
Mutual labels:  numpy, scikit-learn, pandas
Data Science Projects With Python
A Case Study Approach to Successful Data Science Projects Using Python, Pandas, and Scikit-Learn
Stars: ✭ 198 (-11.21%)
Mutual labels:  pandas, scikit-learn, numpy
Credit Risk Modelling
Credit Risk analysis by using Python and ML
Stars: ✭ 91 (-59.19%)
Mutual labels:  pandas, scikit-learn, numpy
Pythondatasciencehandbook
The book was written and tested with Python 3.5, though other Python versions (including Python 2.7) should work in nearly all cases.
Stars: ✭ 31,995 (+14247.53%)
Mutual labels:  pandas, scikit-learn, numpy
Python Cheat Sheet
Python Cheat Sheet NumPy, Matplotlib
Stars: ✭ 1,739 (+679.82%)
Mutual labels:  pandas, scikit-learn, numpy
Data Science Ipython Notebooks
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.
Stars: ✭ 22,048 (+9787%)
Mutual labels:  pandas, scikit-learn, numpy
Machinelearningcourse
A collection of notebooks of my Machine Learning class written in python 3
Stars: ✭ 35 (-84.3%)
Mutual labels:  pandas, scikit-learn, numpy
Deep Learning Wizard
Open source guides/codes for mastering deep learning to deploying deep learning in production in PyTorch, Python, C++ and more.
Stars: ✭ 343 (+53.81%)
Mutual labels:  pandas, scikit-learn, numpy
Iml
Курс "Введение в машинное обучение" (ВМК, МГУ имени М.В. Ломоносова)
Stars: ✭ 46 (-79.37%)
Mutual labels:  pandas, scikit-learn, numpy
introduction to ml with python
도서 "[개정판] 파이썬 라이브러리를 활용한 머신 러닝"의 주피터 노트북과 코드입니다.
Stars: ✭ 211 (-5.38%)
Mutual labels:  numpy, scikit-learn, pandas
DataSciPy
Data Science with Python
Stars: ✭ 15 (-93.27%)
Mutual labels:  numpy, scikit-learn, pandas
Docker Alpine Python Machinelearning
Small Docker image with Python Machine Learning tools (~180MB) https://hub.docker.com/r/frolvlad/alpine-python-machinelearning/
Stars: ✭ 76 (-65.92%)
Mutual labels:  pandas, scikit-learn, numpy
Studybook
Study E-Book(ComputerVision DeepLearning MachineLearning Math NLP Python ReinforcementLearning)
Stars: ✭ 1,457 (+553.36%)
Mutual labels:  pandas, scikit-learn, numpy

Machine Learning Containers for Jetson and JetPack

Hosted on NVIDIA GPU Cloud (NGC) are the following Docker container images for machine learning on Jetson:

Dockerfiles are also provided for the following containers, which can be built for JetPack 4.4 or newer:

  • ROS Melodic (ros:melodic-ros-base-l4t-r32.4.4)
  • ROS Noetic (ros:noetic-ros-base-l4t-r32.4.4)
  • ROS2 Eloquent (ros:eloquent-ros-base-l4t-r32.4.4)
  • ROS2 Foxy (ros:foxy-ros-base-l4t-r32.4.4)

Below are the instructions to build and test the containers using the included Dockerfiles.

Docker Default Runtime

To enable access to the CUDA compiler (nvcc) during docker build operations, add "default-runtime": "nvidia" to your /etc/docker/daemon.json configuration file before attempting to build the containers:

{
    "runtimes": {
        "nvidia": {
            "path": "nvidia-container-runtime",
            "runtimeArgs": []
        }
    },

    "default-runtime": "nvidia"
}

You will then want to restart the Docker service or reboot your system before proceeding.

Building the Containers

To rebuild the containers from a Jetson device running JetPack 4.4 or newer, first clone this repo:

$ git clone https://github.com/dusty-nv/jetson-containers
$ cd jetson-containers

ML Containers

To build the ML containers (l4t-pytorch, l4t-tensorflow, l4t-ml), use scripts/docker_build_ml.sh - along with an optional argument of which container(s) to build:

$ ./scripts/docker_build_ml.sh all        # build all: l4t-pytorch, l4t-tensorflow, and l4t-ml
$ ./scripts/docker_build_ml.sh pytorch    # build only l4t-pytorch
$ ./scripts/docker_build_ml.sh tensorflow # build only l4t-tensorflow

You have to build l4t-pytorch and l4t-tensorflow to build l4t-ml, because it uses those base containers in the multi-stage build.

Note that the TensorFlow and PyTorch pip wheel installers for aarch64 are automatically downloaded in the Dockerfiles from the Jetson Zoo.

ROS Containers

To build the ROS containers, use scripts/docker_build_ros.sh with the name of the ROS distro to build:

$ ./scripts/docker_build_ros.sh all       # build all: melodic, noetic, eloquent, foxy
$ ./scripts/docker_build_ros.sh melodic   # build only melodic
$ ./scripts/docker_build_ros.sh noetic    # build only noetic
$ ./scripts/docker_build_ros.sh eloquent  # build only eloquent
$ ./scripts/docker_build_ros.sh foxy      # build only foxy

Note that ROS Noetic and ROS2 Foxy are built from source for Ubuntu 18.04, while ROS Melodic and ROS2 Eloquent are installed from Debian packages into the containers.

Testing the Containers

To run a series of automated tests on the packages installed in the containers, run the following from your jetson-containers directory:

$ ./scripts/docker_test_ml.sh all        # test all: l4t-pytorch, l4t-tensorflow, and l4t-ml
$ ./scripts/docker_test_ml.sh pytorch    # test only l4t-pytorch
$ ./scripts/docker_test_ml.sh tensorflow # test only l4t-tensorflow

To test ROS:

$ ./scripts/docker_test_ros.sh all       # test if the build of ROS all was successful: 'melodic', 'noetic', 'eloquent', 'foxy'
$ ./scripts/docker_test_ros.sh melodic   # test if the build of 'ROS melodic' was successful
$ ./scripts/docker_test_ros.sh noetic    # test if the build of 'ROS noetic' was successful
$ ./scripts/docker_test_ros.sh eloquent  # test if the build of 'ROS eloquent' was successful
$ ./scripts/docker_test_ros.sh foxy      # test if the build of 'ROS foxy' was successful
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].