All Projects → matrix-profile-foundation → Matrixprofile

matrix-profile-foundation / Matrixprofile

Licence: apache-2.0
A Python 3 library making time series data mining tasks, utilizing matrix profile algorithms, accessible to everyone.

Programming Languages

python
139335 projects - #7 most used programming language
python3
1442 projects
python2
120 projects

Projects that are alternatives of or similar to Matrixprofile

Orange3
🍊 📊 💡 Orange: Interactive data analysis
Stars: ✭ 3,152 (+2135.46%)
Mutual labels:  hacktoberfest, data-science, data-mining, clustering
Pycaret
An open-source, low-code machine learning library in Python
Stars: ✭ 4,594 (+3158.16%)
Mutual labels:  data-science, time-series, clustering, anomaly-detection
Elki
ELKI Data Mining Toolkit
Stars: ✭ 613 (+334.75%)
Mutual labels:  data-science, data-mining, time-series, clustering
Sktime
A unified framework for machine learning with time series
Stars: ✭ 4,741 (+3262.41%)
Mutual labels:  data-science, data-mining, time-series, time-series-analysis
Pyclustering
pyclustring is a Python, C++ data mining library.
Stars: ✭ 806 (+471.63%)
Mutual labels:  algorithms, data-science, data-mining, clustering
Tsrepr
TSrepr: R package for time series representations
Stars: ✭ 75 (-46.81%)
Mutual labels:  data-science, data-mining, time-series, time-series-analysis
Awesome Datascience
📝 An awesome Data Science repository to learn and apply for real world problems.
Stars: ✭ 17,520 (+12325.53%)
Mutual labels:  hacktoberfest, data-science, data-mining
CoronaDash
COVID-19 spread shiny dashboard with a forecasting model, countries' trajectories graphs, and cluster analysis tools
Stars: ✭ 20 (-85.82%)
Mutual labels:  time-series, clustering, time-series-analysis
R
All Algorithms implemented in R
Stars: ✭ 294 (+108.51%)
Mutual labels:  algorithms, data-mining, clustering
Stumpy
STUMPY is a powerful and scalable Python library for modern time series analysis
Stars: ✭ 2,019 (+1331.91%)
Mutual labels:  data-science, anomaly-detection, time-series-analysis
Anomaly Detection Resources
Anomaly detection related books, papers, videos, and toolboxes
Stars: ✭ 5,306 (+3663.12%)
Mutual labels:  data-mining, anomaly-detection, time-series-analysis
Pyodds
An End-to-end Outlier Detection System
Stars: ✭ 141 (+0%)
Mutual labels:  time-series, anomaly-detection, time-series-analysis
H1st
The AI Application Platform We All Need. Human AND Machine Intelligence. Based on experience building AI solutions at Panasonic: robotics predictive maintenance, cold-chain energy optimization, Gigafactory battery mfg, avionics, automotive cybersecurity, and more.
Stars: ✭ 697 (+394.33%)
Mutual labels:  hacktoberfest, data-science, time-series
Jupyter
Stars: ✭ 145 (+2.84%)
Mutual labels:  hacktoberfest, algorithms, data-science
awesome-time-series
Resources for working with time series and sequence data
Stars: ✭ 178 (+26.24%)
Mutual labels:  time-series, time-series-analysis, anomaly-detection
Pyfts
An open source library for Fuzzy Time Series in Python
Stars: ✭ 154 (+9.22%)
Mutual labels:  data-science, time-series, time-series-analysis
Pyod
A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)
Stars: ✭ 5,083 (+3504.96%)
Mutual labels:  data-science, data-mining, anomaly-detection
Ml
A high-level machine learning and deep learning library for the PHP language.
Stars: ✭ 1,270 (+800.71%)
Mutual labels:  data-science, anomaly-detection, clustering
Awesome Ts Anomaly Detection
List of tools & datasets for anomaly detection on time-series data.
Stars: ✭ 2,027 (+1337.59%)
Mutual labels:  data-mining, time-series, anomaly-detection
Ml Email Clustering
Email clustering with machine learning
Stars: ✭ 116 (-17.73%)
Mutual labels:  data-science, clustering

.. image:: https://matrixprofile.org/static/img/mpf-logo.png :target: https://matrixprofile.org :height: 300px :scale: 50% :alt: MPF Logo | | .. image:: https://img.shields.io/pypi/v/matrixprofile.svg :target: https://pypi.org/project/matrixprofile/ :alt: PyPI Version .. image:: https://pepy.tech/badge/matrixprofile :target: https://pepy.tech/project/matrixprofile :alt: PyPI Downloads .. image:: https://img.shields.io/conda/vn/conda-forge/matrixprofile.svg :target: https://anaconda.org/conda-forge/matrixprofile :alt: Conda Version .. image:: https://img.shields.io/conda/dn/conda-forge/matrixprofile.svg :target: https://anaconda.org/conda-forge/matrixprofile :alt: Conda Downloads .. image:: https://codecov.io/gh/matrix-profile-foundation/matrixprofile/branch/master/graph/badge.svg :target: https://codecov.io/gh/matrix-profile-foundation/matrixprofile :alt: Code Coverage .. image:: https://dev.azure.com/conda-forge/feedstock-builds/_apis/build/status/matrixprofile-feedstock?branchName=master :target: https://dev.azure.com/conda-forge/feedstock-builds/_build/latest?definitionId=11637&branchName=master :alt: Azure Pipelines .. image:: https://api.travis-ci.com/matrix-profile-foundation/matrixprofile.svg?branch=master :target: https://travis-ci.com/matrix-profile-foundation/matrixprofile :alt: Build Status .. image:: https://img.shields.io/conda/pn/conda-forge/matrixprofile.svg :target: https://anaconda.org/conda-forge/matrixprofile :alt: Platforms .. image:: https://img.shields.io/badge/License-Apache%202.0-blue.svg :target: https://opensource.org/licenses/Apache-2.0 :alt: License .. image:: https://img.shields.io/twitter/follow/matrixprofile.svg?style=social :target: https://twitter.com/matrixprofile :alt: Twitter .. image:: https://img.shields.io/discord/589321741277462559?logo=discord :target: https://discordapp.com/invite/sBhDNXT :alt: Discord .. image:: https://joss.theoj.org/papers/10.21105/joss.02179/status.svg :target: https://doi.org/10.21105/joss.02179 :alt: JOSSDOI .. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3789780.svg :target: https://doi.org/10.5281/zenodo.3789780 :alt: ZenodoDOI

MatrixProfile

MatrixProfile is a Python 3 library, brought to you by the Matrix Profile Foundation <https://matrixprofile.org>, for mining time series data. The Matrix Profile is a novel data structure with corresponding algorithms (stomp, regimes, motifs, etc.) developed by the Keogh <https://www.cs.ucr.edu/~eamonn/MatrixProfile.html> and Mueen <https://www.cs.unm.edu/~mueen/>_ research groups at UC-Riverside and the University of New Mexico. The goal of this library is to make these algorithms accessible to both the novice and expert through standardization of core concepts, a simplistic API, and sensible default parameter values.

In addition to this Python library, the Matrix Profile Foundation, provides implementations in other languages. These languages have a pretty consistent API allowing you to easily switch between them without a huge learning curve.

  • tsmp <https://github.com/matrix-profile-foundation/tsmp>_ - an R implementation
  • go-matrixprofile <https://github.com/matrix-profile-foundation/go-matrixprofile>_ - a Golang implementation

Python Support

Currently, we support the following versions of Python:

  • 3.5
  • 3.6
  • 3.7
  • 3.8
  • 3.9

Python 2 is no longer supported. There are earlier versions of this library that support Python 2.

Installation

The easiest way to install this library is using pip or conda. If you would like to install it from source, please review the installation documentation <http://matrixprofile.docs.matrixprofile.org/install.html>_ for your platform.

Installation with pip

.. code-block:: bash

pip install matrixprofile

Installation with conda

.. code-block:: bash

conda config --add channels conda-forge conda install matrixprofile

Getting Started

This article provides introductory material on the Matrix Profile: Introduction to Matrix Profiles <https://towardsdatascience.com/introduction-to-matrix-profiles-5568f3375d90>_

This article provides details about core concepts introduced in this library: How To Painlessly Analyze Your Time Series <https://towardsdatascience.com/how-to-painlessly-analyze-your-time-series-f52dab7ea80d>_

Our documentation provides a quick start guide <http://matrixprofile.docs.matrixprofile.org/Quickstart.html>, examples <http://matrixprofile.docs.matrixprofile.org/examples.html> and api <http://matrixprofile.docs.matrixprofile.org/api.html>_ documentation. It is the source of truth for getting up and running.

Algorithms

For details about the algorithms implemented, including performance characteristics, please refer to the documentation <http://matrixprofile.docs.matrixprofile.org/Algorithms.html>_.


Getting Help

We provide a dedicated Discord channel <https://discordapp.com/invite/sBhDNXT>_ where practitioners can discuss applications and ask questions about the Matrix Profile Foundation libraries. If you rather not join Discord, then please open a Github issue <https://github.com/matrix-profile-foundation/matrixprofile/issues>_.


Contributing

Please review the contributing guidelines <http://matrixprofile.docs.matrixprofile.org/contributing.html>_ located in our documentation.


Code of Conduct

Please review our Code of Conduct documentation <http://matrixprofile.docs.matrixprofile.org/code_of_conduct.html>_.


Citations

All proper acknowledgements for works of others may be found in our citation documentation <http://matrixprofile.docs.matrixprofile.org/citations.html>_.


Citing

Please cite this work using the Journal of Open Source Software article <https://joss.theoj.org/papers/10.21105/joss.02179>_.

Van Benschoten et al., (2020). MPA: a novel cross-language API for time series analysis. Journal of Open Source Software, 5(49), 2179, https://doi.org/10.21105/joss.02179

.. code:: bibtex

@article{Van Benschoten2020,
    doi = {10.21105/joss.02179},
    url = {https://doi.org/10.21105/joss.02179},
    year = {2020},
    publisher = {The Open Journal},
    volume = {5},
    number = {49},
    pages = {2179},
    author = {Andrew Van Benschoten and Austin Ouyang and Francisco Bischoff and Tyler Marrs},
    title = {MPA: a novel cross-language API for time series analysis},
    journal = {Journal of Open Source Software}
}
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].