All Projects → ggulgun → NIDS-Intrusion-Detection

ggulgun / NIDS-Intrusion-Detection

Licence: GPL-3.0 License
Simple Implementation of Network Intrusion Detection System. KddCup'99 Data set is used for this project. kdd_cup_10_percent is used for training test. correct set is used for test. PCA is used for dimension reduction. SVM and KNN supervised algorithms are the classification algorithms of project. Accuracy : %83.5 For SVM , %80 For KNN

Programming Languages

python
139335 projects - #7 most used programming language

Projects that are alternatives of or similar to NIDS-Intrusion-Detection

ml
经典机器学习算法的极简实现
Stars: ✭ 130 (+188.89%)
Mutual labels:  svm, pca, knn
VisualML
Interactive Visual Machine Learning Demos.
Stars: ✭ 104 (+131.11%)
Mutual labels:  svm, pca
Anomaly-detection-system
Machine learning based Intrusion detection system (IDS)
Stars: ✭ 27 (-40%)
Mutual labels:  ids, intrusion-detection-system
UNSW NB15
Feature coded UNSW_NB15 intrusion detection data.
Stars: ✭ 50 (+11.11%)
Mutual labels:  intrusion-detection, kdd99
moses
Streaming, Memory-Limited, r-truncated SVD Revisited!
Stars: ✭ 19 (-57.78%)
Mutual labels:  pca, dimensionality-reduction
Fall-Detection-Dataset
FUKinect-Fall dataset was created using Kinect V1. The dataset includes walking, bending, sitting, squatting, lying and falling actions performed by 21 subjects between 19-72 years of age.
Stars: ✭ 16 (-64.44%)
Mutual labels:  svm, knn
Data-Mining-and-Warehousing
Data Mining algorithms for IDMW632C course at IIIT Allahabad, 6th semester
Stars: ✭ 19 (-57.78%)
Mutual labels:  data-mining, data-mining-algorithms
FSCNMF
An implementation of "Fusing Structure and Content via Non-negative Matrix Factorization for Embedding Information Networks".
Stars: ✭ 16 (-64.44%)
Mutual labels:  data-mining, pca
MachineLearning
机器学习教程,本教程包含基于numpy、sklearn与tensorflow机器学习,也会包含利用spark、flink加快模型训练等用法。本着能够较全的引导读者入门机器学习。
Stars: ✭ 23 (-48.89%)
Mutual labels:  svm, knn
TheBriarPatch
An extremely crude, lightweight Web Frontend for Suricata/Bro to be used with BriarIDS
Stars: ✭ 21 (-53.33%)
Mutual labels:  ids, intrusion-detection
wazuh-packages
Wazuh - Tools for packages creation
Stars: ✭ 54 (+20%)
Mutual labels:  ids, intrusion-detection
kdd99-scikit
Solutions to kdd99 dataset with Decision tree and Neural network by scikit-learn
Stars: ✭ 50 (+11.11%)
Mutual labels:  intrusion-detection, kdd99
introduction-to-machine-learning
A document covering machine learning basics. 🤖📊
Stars: ✭ 17 (-62.22%)
Mutual labels:  svm, knn
wazuh-ansible
Wazuh - Ansible playbook
Stars: ✭ 166 (+268.89%)
Mutual labels:  ids, intrusion-detection
federated pca
Federated Principal Component Analysis Revisited!
Stars: ✭ 30 (-33.33%)
Mutual labels:  pca, dimensionality-reduction
sandfly-setup
Sandfly Security Agentless Compromise and Intrusion Detection System For Linux
Stars: ✭ 45 (+0%)
Mutual labels:  intrusion-detection, intrusion-detection-system
ml-simulations
Animated Visualizations of Popular Machine Learning Algorithms
Stars: ✭ 33 (-26.67%)
Mutual labels:  pca, knn
Apriori-and-Eclat-Frequent-Itemset-Mining
Implementation of the Apriori and Eclat algorithms, two of the best-known basic algorithms for mining frequent item sets in a set of transactions, implementation in Python.
Stars: ✭ 36 (-20%)
Mutual labels:  data-mining, data-mining-algorithms
Handwritten-Digits-Classification-Using-KNN-Multiclass Perceptron-SVM
🏆 A Comparative Study on Handwritten Digits Recognition using Classifiers like K-Nearest Neighbours (K-NN), Multiclass Perceptron/Artificial Neural Network (ANN) and Support Vector Machine (SVM) discussing the pros and cons of each algorithm and providing the comparison results in terms of accuracy and efficiecy of each algorithm.
Stars: ✭ 42 (-6.67%)
Mutual labels:  svm, knn
Dimensionality-reduction-and-classification-on-Hyperspectral-Images-Using-Python
In this repository, You can find the files which implement dimensionality reduction on the hyperspectral image(Indian Pines) with classification.
Stars: ✭ 63 (+40%)
Mutual labels:  pca, dimensionality-reduction

NIDS

Simple Implementation of Network Intrusion Detection System. KddCup'99 Data set is used for this project. kdd_cup_10_percent is used for training test. correct set is used for test. PCA is used for dimension reduction. SVM and KNN supervised algorithms are the classification algorithms of project. Accuracy : %83.5 For SVM , %80 For KNN

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].