All Projects → gboeing → Pynamical

gboeing / Pynamical

Licence: mit
Pynamical is a Python package for modeling and visualizing discrete nonlinear dynamical systems, chaos, and fractals.

Programming Languages

python
139335 projects - #7 most used programming language

Projects that are alternatives of or similar to Pynamical

Mlcourse.ai
Open Machine Learning Course
Stars: ✭ 7,963 (+1638.65%)
Mutual labels:  pandas, ipynb, numpy, math, matplotlib
cas
Cellular Automata Simulator
Stars: ✭ 22 (-95.2%)
Mutual labels:  math, physics, chaos, fractal
Ai Learn
人工智能学习路线图,整理近200个实战案例与项目,免费提供配套教材,零基础入门,就业实战!包括:Python,数学,机器学习,数据分析,深度学习,计算机视觉,自然语言处理,PyTorch tensorflow machine-learning,deep-learning data-analysis data-mining mathematics data-science artificial-intelligence python tensorflow tensorflow2 caffe keras pytorch algorithm numpy pandas matplotlib seaborn nlp cv等热门领域
Stars: ✭ 4,387 (+857.86%)
Mutual labels:  pandas, numpy, matplotlib
introduction to ml with python
도서 "[개정판] 파이썬 라이브러리를 활용한 머신 러닝"의 주피터 노트북과 코드입니다.
Stars: ✭ 211 (-53.93%)
Mutual labels:  numpy, pandas, matplotlib
Data Science Ipython Notebooks
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.
Stars: ✭ 22,048 (+4713.97%)
Mutual labels:  pandas, numpy, matplotlib
Engezny
Engezny is a python package that quickly generates all possible charts from your dataframe and saves them for you, and engezny is only supporting now uni-parameter visualization using the pie, bar and barh visualizations.
Stars: ✭ 25 (-94.54%)
Mutual labels:  numpy, pandas, matplotlib
Data-Science-Resources
A guide to getting started with Data Science and ML.
Stars: ✭ 17 (-96.29%)
Mutual labels:  math, numpy, pandas
Python for data analysis 2nd chinese version
《利用Python进行数据分析·第2版》
Stars: ✭ 4,049 (+784.06%)
Mutual labels:  pandas, numpy, matplotlib
Udacity-Data-Analyst-Nanodegree
Repository for the projects needed to complete the Data Analyst Nanodegree.
Stars: ✭ 31 (-93.23%)
Mutual labels:  numpy, pandas, matplotlib
data-analysis-using-python
Data Analysis Using Python: A Beginner’s Guide Featuring NYC Open Data
Stars: ✭ 81 (-82.31%)
Mutual labels:  numpy, pandas, matplotlib
Exploratory Data Analysis Visualization Python
Data analysis and visualization with PyData ecosystem: Pandas, Matplotlib Numpy, and Seaborn
Stars: ✭ 78 (-82.97%)
Mutual labels:  numpy, pandas, matplotlib
Stats Maths With Python
General statistics, mathematical programming, and numerical/scientific computing scripts and notebooks in Python
Stars: ✭ 381 (-16.81%)
Mutual labels:  pandas, numpy, matplotlib
Data Science Hacks
Data Science Hacks consists of tips, tricks to help you become a better data scientist. Data science hacks are for all - beginner to advanced. Data science hacks consist of python, jupyter notebook, pandas hacks and so on.
Stars: ✭ 273 (-40.39%)
Mutual labels:  pandas, ipynb, numpy
covid-19
Data ETL & Analysis on the global and Mexican datasets of the COVID-19 pandemic.
Stars: ✭ 14 (-96.94%)
Mutual labels:  numpy, pandas, matplotlib
datascienv
datascienv is package that helps you to setup your environment in single line of code with all dependency and it is also include pyforest that provide single line of import all required ml libraries
Stars: ✭ 53 (-88.43%)
Mutual labels:  numpy, pandas, matplotlib
Python-for-data-analysis
No description or website provided.
Stars: ✭ 18 (-96.07%)
Mutual labels:  numpy, pandas, matplotlib
Quaternion
Add built-in support for quaternions to numpy
Stars: ✭ 387 (-15.5%)
Mutual labels:  numpy, math, physics
Windrose
A Python Matplotlib, Numpy library to manage wind data, draw windrose (also known as a polar rose plot), draw probability density function and fit Weibull distribution
Stars: ✭ 208 (-54.59%)
Mutual labels:  pandas, numpy, matplotlib
Python Wechat Itchat
微信机器人,基于Python itchat接口功能实例展示:01-itchat获取微信好友或者微信群分享文章、02-itchat获取微信公众号文章、03-itchat监听微信公众号发送的文章、04 itchat监听微信群或好友撤回的消息、05 itchat获得微信好友信息以及表图对比、06 python打印出微信被删除好友、07 itchat自动回复好友、08 itchat微信好友个性签名词云图、09 itchat微信好友性别比例、10 微信群或微信好友撤回消息拦截、11 itchat微信群或好友之间转发消息
Stars: ✭ 216 (-52.84%)
Mutual labels:  pandas, numpy, matplotlib
Dimensionality-reduction-and-classification-on-Hyperspectral-Images-Using-Python
In this repository, You can find the files which implement dimensionality reduction on the hyperspectral image(Indian Pines) with classification.
Stars: ✭ 63 (-86.24%)
Mutual labels:  numpy, pandas, matplotlib

PyPI Version Anaconda Downloads Documentation Status Build Status Coverage Status

pynamical

Python package for modeling, simulating, visualizing, and animating discrete nonlinear dynamical systems and chaos

Pynamical uses pandas, numpy, and numba for fast simulation, and matplotlib for visualizations and animations to explore system behavior.

Pynamical comes packaged with the logistic map, the Singer map, and the cubic map predefined. The models may be run with a range of parameter values over a set of time steps, and the resulting numerical output is returned as a pandas DataFrame. Pynamical can then visualize this output in various ways, including with bifurcation diagrams, two-dimensional phase diagrams, three-dimensional phase diagrams, and cobweb plots.

Citation info: Boeing, G. 2016. "Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction." Systems, 4 (4), 37. doi:10.3390/systems4040037.

Install:

You can install pynamical with conda:

conda config --prepend channels conda-forge
conda create -n pynamical --strict-channel-priority jupyterlab pynamical

Alternatively, you can run pynamical + Jupyter directly from its Docker container, or you can install it with pip.

Documentation:

Available on readthedocs.

Demos/tutorial:

  1. Pynamical: quick overview
  2. Pynamical: the logistic model and bifurcation diagrams
  3. Pynamical: 2D and 3D phase diagrams
  4. Pynamical: static and animated cobweb plots
  5. Pynamical: animated 3D phase diagrams
  6. Pynamical: demonstrating other models

Quick walkthrough:

First load pynamical. Then simulate some model and visualize its bifurcation diagram in just 2 lines of code:

from pynamical import logistic_map, simulate, bifurcation_plot
pops = simulate(model=logistic_map, num_gens=100, rate_min=0, rate_max=4, num_rates=1000, num_discard=100)
bifurcation_plot(pops)

Zoom into a slice of this bifurcation diagram to see its fractal structure:

pops = simulate(model=logistic_map, num_gens=100, rate_min=3.7, rate_max=3.9, num_rates=1000, num_discard=100)
bifurcation_plot(pops, xmin=3.7, xmax=3.9)

Plot a two-dimensional phase diagram of the logistic map:

from pynamical import phase_diagram
pops = simulate(model=logistic_map, num_gens=4000, rate_min=3.6, rate_max=4.0, num_rates=50, num_discard=100)
phase_diagram(pops, xmin=0.25, xmax=0.75, ymin=0.8, ymax=1.01, size=7, color='viridis')

Or a three-dimensional phase diagram of the cubic map:

from pynamical import cubic_map, phase_diagram_3d
pops = simulate(model=cubic_map, num_gens=3000, rate_min=3.5, num_rates=30, num_discard=100)
phase_diagram_3d(pops, xmin=-1, xmax=1, ymin=-1, ymax=1, zmin=-1, zmax=1, alpha=0.2, color='viridis', azim=330)

Animate the 3D phase diagram of the logistic map to reveal the strange attractor's structure:

Animate a cobweb plot of the logistic map's parameter space to explore sensitivity and behavior:

Or define your own model and simulate it with pynamical.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].