All Projects → FrancescoSaverioZuppichini → Pytorch How And When To Use Module Sequential Modulelist And Moduledict

FrancescoSaverioZuppichini / Pytorch How And When To Use Module Sequential Modulelist And Moduledict

Code for my medium article

Projects that are alternatives of or similar to Pytorch How And When To Use Module Sequential Modulelist And Moduledict

Fixy
Amacımız Türkçe NLP literatüründeki birçok farklı sorunu bir arada çözebilen, eşsiz yaklaşımlar öne süren ve literatürdeki çalışmaların eksiklerini gideren open source bir yazım destekleyicisi/denetleyicisi oluşturmak. Kullanıcıların yazdıkları metinlerdeki yazım yanlışlarını derin öğrenme yaklaşımıyla çözüp aynı zamanda metinlerde anlamsal analizi de gerçekleştirerek bu bağlamda ortaya çıkan yanlışları da fark edip düzeltebilmek.
Stars: ✭ 165 (-19.9%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Learning Content
Resources for the study group in IIT Guwahati focused on learning Artificial Intelligence.
Stars: ✭ 187 (-9.22%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Colab
Continual Learning tutorials and demo running on Google Colaboratory.
Stars: ✭ 168 (-18.45%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Machine Learning With Python
Practice and tutorial-style notebooks covering wide variety of machine learning techniques
Stars: ✭ 2,197 (+966.5%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Atari Model Zoo
A binary release of trained deep reinforcement learning models trained in the Atari machine learning benchmark, and a software release that enables easy visualization and analysis of models, and comparison across training algorithms.
Stars: ✭ 198 (-3.88%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Artificial Intelligence Projects
Collection of Artificial Intelligence projects.
Stars: ✭ 152 (-26.21%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Data Science Resources
👨🏽‍🏫You can learn about what data science is and why it's important in today's modern world. Are you interested in data science?🔋
Stars: ✭ 171 (-16.99%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Image Caption Generator
[DEPRECATED] A Neural Network based generative model for captioning images using Tensorflow
Stars: ✭ 141 (-31.55%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Deep Learning With Python
Deep learning codes and projects using Python
Stars: ✭ 195 (-5.34%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Imodels
Interpretable ML package 🔍 for concise, transparent, and accurate predictive modeling (sklearn-compatible).
Stars: ✭ 194 (-5.83%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Hands On Machine Learning With Scikit Learn Keras And Tensorflow
Notes & exercise solutions of Part I from the book: "Hands-On ML with Scikit-Learn, Keras & TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems" by Aurelien Geron
Stars: ✭ 151 (-26.7%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Traffic Sign Detection
Traffic Sign Detection. Code for the paper entitled "Evaluation of deep neural networks for traffic sign detection systems".
Stars: ✭ 200 (-2.91%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Forecasting
Time Series Forecasting Best Practices & Examples
Stars: ✭ 2,123 (+930.58%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Tensorflow Dataset Tutorial
Notebook for my medium article about how to use Dataset API in TensorFlow
Stars: ✭ 158 (-23.3%)
Mutual labels:  artificial-intelligence, jupyter-notebook
100daysofmlcode
My journey to learn and grow in the domain of Machine Learning and Artificial Intelligence by performing the #100DaysofMLCode Challenge.
Stars: ✭ 146 (-29.13%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Log Anomaly Detector
Log Anomaly Detection - Machine learning to detect abnormal events logs
Stars: ✭ 169 (-17.96%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Image classifier
CNN image classifier implemented in Keras Notebook 🖼️.
Stars: ✭ 139 (-32.52%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Nlpaug
Data augmentation for NLP
Stars: ✭ 2,761 (+1240.29%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Deep Learning Notes
My personal notes, presentations, and notebooks on everything Deep Learning.
Stars: ✭ 191 (-7.28%)
Mutual labels:  artificial-intelligence, jupyter-notebook
Pytorch Geometric Yoochoose
This is a tutorial for PyTorch Geometric on the YooChoose dataset
Stars: ✭ 198 (-3.88%)
Mutual labels:  artificial-intelligence, jupyter-notebook

Pytorch: how and when to use Module, Sequential, ModuleList and ModuleDict

Effective way to share, reuse and break down the complexity of your models

Updated at Pytorch 1.5

You can find the code here

Pytorch is an open source deep learning frameworks that provide a smart way to create ML models. Even if the documentation is well made, I still see that most people don't write well and organized code in PyTorch.

Today, we are going to see how to use the three main building blocks of PyTorch: Module, Sequential and ModuleList. We are going to start with an example and iteratively we will make it better.

All these four classes are contained into torch.nn

import torch.nn as nn

# nn.Module
# nn.Sequential
# nn.Module

Module: the main building block

The Module is the main building block, it defines the base class for all neural network and you MUST subclass it.

Let's create a classic CNN classifier as example:

import torch.nn.functional as F

class MyCNNClassifier(nn.Module):
    def __init__(self, in_c, n_classes):
        super().__init__()
        self.conv1 = nn.Conv2d(in_c, 32, kernel_size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(32)
        
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(64)

        self.fc1 = nn.Linear(64 * 28 * 28, 1024)
        self.fc2 = nn.Linear(1024, n_classes)
        
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = F.relu(x)
        
        x = self.conv2(x)
        x = self.bn2(x)
        x = F.relu(x)

        x = x.view(x.size(0), -1) # flat
        
        x = self.fc1(x)
        x = F.sigmoid(x)
        x = self.fc2(x)
        
        return x
model = MyCNNClassifier(1, 10)
print(model)
MyCNNClassifier(
  (conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (fc1): Linear(in_features=50176, out_features=1024, bias=True)
  (fc2): Linear(in_features=1024, out_features=10, bias=True)
)

This is a very simple classifier with an encoding part that uses two layers with 3x3 convs + batchnorm + relu and a decoding part with two linear layers. If you are not new to PyTorch you may have seen this type of coding before, but there are two problems.

If we want to add a layer we have to again write lots of code in the __init__ and in the forward function. Also, if we have some common block that we want to use in another model, e.g. the 3x3 conv + batchnorm + relu, we have to write it again.

Sequential: stack and merge layers

Sequential is a container of Modules that can be stacked together and run at the same time.

You can notice that we have to store into self everything. We can use Sequential to improve our code.

class MyCNNClassifier(nn.Module):
    def __init__(self, in_c, n_classes):
        super().__init__()
        self.conv_block1 = nn.Sequential(
            nn.Conv2d(in_c, 32, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU()
        )
        
        self.conv_block2 = nn.Sequential(
            nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )
        
        self.decoder = nn.Sequential(
            nn.Linear(64 * 28 * 28, 1024),
            nn.Sigmoid(),
            nn.Linear(1024, n_classes)
        )

        
    def forward(self, x):
        x = self.conv_block1(x)
        x = self.conv_block2(x)

        x = x.view(x.size(0), -1) # flat
        
        x = self.decoder(x)
        
        return x
model = MyCNNClassifier(1, 10)
print(model)
MyCNNClassifier(
  (conv_block1): Sequential(
    (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (conv_block2): Sequential(
    (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (decoder): Sequential(
    (0): Linear(in_features=50176, out_features=1024, bias=True)
    (1): Sigmoid()
    (2): Linear(in_features=1024, out_features=10, bias=True)
  )
)

Much Better uhu?

Did you notice that conv_block1 and conv_block2 looks almost the same? We could create a function that reteurns a nn.Sequential to even simplify the code!

def conv_block(in_f, out_f, *args, **kwargs):
    return nn.Sequential(
        nn.Conv2d(in_f, out_f, *args, **kwargs),
        nn.BatchNorm2d(out_f),
        nn.ReLU()
    )

Then we can just call this function in our Module

class MyCNNClassifier(nn.Module):
    def __init__(self, in_c, n_classes):
        super().__init__()
        self.conv_block1 = conv_block(in_c, 32, kernel_size=3, padding=1)
        
        self.conv_block2 = conv_block(32, 64, kernel_size=3, padding=1)

        
        self.decoder = nn.Sequential(
            nn.Linear(64 * 28 * 28, 1024),
            nn.Sigmoid(),
            nn.Linear(1024, n_classes)
        )

        
    def forward(self, x):
        x = self.conv_block1(x)
        x = self.conv_block2(x)

        x = x.view(x.size(0), -1) # flat
        
        x = self.decoder(x)
        
        return x
model = MyCNNClassifier(1, 10)
print(model)
MyCNNClassifier(
  (conv_block1): Sequential(
    (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (conv_block2): Sequential(
    (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (decoder): Sequential(
    (0): Linear(in_features=50176, out_features=1024, bias=True)
    (1): Sigmoid()
    (2): Linear(in_features=1024, out_features=10, bias=True)
  )
)

Even cleaner! Still conv_block1 and conv_block2 are almost the same! We can merge them using nn.Sequential

class MyCNNClassifier(nn.Module):
    def __init__(self, in_c, n_classes):
        super().__init__()
        self.encoder = nn.Sequential(
            conv_block(in_c, 32, kernel_size=3, padding=1),
            conv_block(32, 64, kernel_size=3, padding=1)
        )

        
        self.decoder = nn.Sequential(
            nn.Linear(64 * 28 * 28, 1024),
            nn.Sigmoid(),
            nn.Linear(1024, n_classes)
        )

        
    def forward(self, x):
        x = self.encoder(x)
        
        x = x.view(x.size(0), -1) # flat
        
        x = self.decoder(x)
        
        return x
model = MyCNNClassifier(1, 10)
print(model)
MyCNNClassifier(
  (encoder): Sequential(
    (0): Sequential(
      (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU()
    )
    (1): Sequential(
      (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU()
    )
  )
  (decoder): Sequential(
    (0): Linear(in_features=50176, out_features=1024, bias=True)
    (1): Sigmoid()
    (2): Linear(in_features=1024, out_features=10, bias=True)
  )
)

self.encoder now holds booth conv_block. We have decoupled logic for our model and make it easier to read and reuse. Our conv_block function can be imported and used in another model.

Dynamic Sequential: create multiple layers at once

What if we can to add a new layers in self.encoder, hardcoded them is not convinient:

self.encoder = nn.Sequential(
            conv_block(in_c, 32, kernel_size=3, padding=1),
            conv_block(32, 64, kernel_size=3, padding=1),
            conv_block(64, 128, kernel_size=3, padding=1),
            conv_block(128, 256, kernel_size=3, padding=1),

        )

Would it be nice if we can define the sizes as an array and automatically create all the layers without writing each one of them? Fortunately we can create an array and pass it to Sequential

class MyCNNClassifier(nn.Module):
    def __init__(self, in_c, n_classes):
        super().__init__()
        self.enc_sizes = [in_c, 32, 64]
        
        conv_blocks = [conv_block(in_f, out_f, kernel_size=3, padding=1) 
                       for in_f, out_f in zip(self.enc_sizes, self.enc_sizes[1:])]
        
        self.encoder = nn.Sequential(*conv_blocks)

        
        self.decoder = nn.Sequential(
            nn.Linear(64 * 28 * 28, 1024),
            nn.Sigmoid(),
            nn.Linear(1024, n_classes)
        )

        
    def forward(self, x):
        x = self.encoder(x)
        
        x = x.view(x.size(0), -1) # flat
        
        x = self.decoder(x)
        
        return x
model = MyCNNClassifier(1, 10)
print(model)
MyCNNClassifier(
  (encoder): Sequential(
    (0): Sequential(
      (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU()
    )
    (1): Sequential(
      (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU()
    )
  )
  (decoder): Sequential(
    (0): Linear(in_features=50176, out_features=1024, bias=True)
    (1): Sigmoid()
    (2): Linear(in_features=1024, out_features=10, bias=True)
  )
)

Let's break it down. We created an array self.enc_sizes that holds the sizes of our encoder. Then we create an array conv_blocks by iterating the sizes. Since we have to give booth a in size and an outsize for each layer we ziped the size'array with itself by shifting it by one.

Just to be clear, take a look at the following example:

sizes = [1, 32, 64]

for in_f,out_f in zip(sizes, sizes[1:]):
    print(in_f,out_f)
1 32
32 64

Then, since Sequential does not accept a list, we decompose it by using the * operator.

Tada! Now if we just want to add a size, we can easily add a new number to the list. It is a common practice to make the size a parameter.

class MyCNNClassifier(nn.Module):
    def __init__(self, in_c, enc_sizes, n_classes):
        super().__init__()
        self.enc_sizes = [in_c, *enc_sizes]
        
        conv_blocks = [conv_block(in_f, out_f, kernel_size=3, padding=1) 
                       for in_f, out_f in zip(self.enc_sizes, self.enc_sizes[1:])]
        
        self.encoder = nn.Sequential(*conv_blocks)

        
        self.decoder = nn.Sequential(
            nn.Linear(64 * 28 * 28, 1024),
            nn.Sigmoid(),
            nn.Linear(1024, n_classes)
        )

        
    def forward(self, x):
        x = self.encoder(x)
        
        x = x.view(x.size(0), -1) # flat
        
        x = self.decoder(x)
        
        return x
model = MyCNNClassifier(1, [32,64, 128], 10)
print(model)
MyCNNClassifier(
  (encoder): Sequential(
    (0): Sequential(
      (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU()
    )
    (1): Sequential(
      (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU()
    )
    (2): Sequential(
      (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU()
    )
  )
  (decoder): Sequential(
    (0): Linear(in_features=50176, out_features=1024, bias=True)
    (1): Sigmoid()
    (2): Linear(in_features=1024, out_features=10, bias=True)
  )
)

We can do the same for the decoder part

def dec_block(in_f, out_f):
    return nn.Sequential(
        nn.Linear(in_f, out_f),
        nn.Sigmoid()
    )

class MyCNNClassifier(nn.Module):
    def __init__(self, in_c, enc_sizes, dec_sizes,  n_classes):
        super().__init__()
        self.enc_sizes = [in_c, *enc_sizes]
        self.dec_sizes = [64 * 28 * 28, *dec_sizes]

        conv_blocks = [conv_block(in_f, out_f, kernel_size=3, padding=1) 
                       for in_f, out_f in zip(self.enc_sizes, self.enc_sizes[1:])]
        
        self.encoder = nn.Sequential(*conv_blocks)

        
        dec_blocks = [dec_block(in_f, out_f) 
                       for in_f, out_f in zip(self.dec_sizes, self.dec_sizes[1:])]
        
        self.decoder = nn.Sequential(*dec_blocks)
        
        self.last = nn.Linear(self.dec_sizes[-1], n_classes)

        
    def forward(self, x):
        x = self.encoder(x)
        
        x = x.view(x.size(0), -1) # flat
        
        x = self.decoder(x)
        
        return x
model = MyCNNClassifier(1, [32,64], [1024, 512], 10)
print(model)
MyCNNClassifier(
  (encoder): Sequential(
    (0): Sequential(
      (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU()
    )
    (1): Sequential(
      (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU()
    )
  )
  (decoder): Sequential(
    (0): Sequential(
      (0): Linear(in_features=50176, out_features=1024, bias=True)
      (1): Sigmoid()
    )
    (1): Sequential(
      (0): Linear(in_features=1024, out_features=512, bias=True)
      (1): Sigmoid()
    )
  )
  (last): Linear(in_features=512, out_features=10, bias=True)
)

We followed the same pattern, we create a new block for the decoding part, linear + sigmoid, and we pass an array with the sizes. We had to add a self.last since we do not want to activate the output

Now, we can even break down our model in two! Encoder + Decoder

class MyEncoder(nn.Module):
    def __init__(self, enc_sizes):
        super().__init__()
        self.conv_blocks = nn.Sequential(*[conv_block(in_f, out_f, kernel_size=3, padding=1) 
                       for in_f, out_f in zip(enc_sizes, enc_sizes[1:])])

        def forward(self, x):
            return self.conv_blocks(x)
        
class MyDecoder(nn.Module):
    def __init__(self, dec_sizes, n_classes):
        super().__init__()
        self.dec_blocks = nn.Sequential(*[dec_block(in_f, out_f) 
                       for in_f, out_f in zip(dec_sizes, dec_sizes[1:])])
        self.last = nn.Linear(dec_sizes[-1], n_classes)

    def forward(self, x):
        return self.dec_blocks()
    
    
class MyCNNClassifier(nn.Module):
    def __init__(self, in_c, enc_sizes, dec_sizes,  n_classes):
        super().__init__()
        self.enc_sizes = [in_c, *enc_sizes]
        self.dec_sizes = [self.enc_sizes[-1] * 28 * 28, *dec_sizes]

        self.encoder = MyEncoder(self.enc_sizes)
        
        self.decoder = MyDecoder(self.dec_sizes, n_classes)
        
    def forward(self, x):
        x = self.encoder(x)
        
        x = x.flatten(1) # flat
        
        x = self.decoder(x)
        
        return x
model = MyCNNClassifier(1, [32,64], [1024, 512], 10)
print(model)
MyCNNClassifier(
  (encoder): MyEncoder(
    (conv_blocks): Sequential(
      (0): Sequential(
        (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (1): Sequential(
        (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
      )
    )
  )
  (decoder): MyDecoder(
    (dec_blocks): Sequential(
      (0): Sequential(
        (0): Linear(in_features=50176, out_features=1024, bias=True)
        (1): Sigmoid()
      )
      (1): Sequential(
        (0): Linear(in_features=1024, out_features=512, bias=True)
        (1): Sigmoid()
      )
    )
    (last): Linear(in_features=512, out_features=10, bias=True)
  )
)

Be aware that MyEncoder and MyDecoder could also be functions that returns a nn.Sequential. I prefer to use the first pattern for models and the second for building blocks.

By diving our module into submodules it is easier to share the code, debug it and test it.

ModuleList : when we need to iterate

ModuleList allows you to store Module as a list. It can be useful when you need to iterate through layer and store/use some information, like in U-net.

The main difference between Sequential is that ModuleList have not a forward method so the inner layers are not connected. Assuming we need each output of each layer in the decoder, we can store it by:

class MyModule(nn.Module):
    def __init__(self, sizes):
        super().__init__()
        self.layers = nn.ModuleList([nn.Linear(in_f, out_f) for in_f, out_f in zip(sizes, sizes[1:])])
        self.trace = []
        
    def forward(self,x):
        for layer in self.layers:
            x = layer(x)
            self.trace.append(x)
        return x
model = MyModule([1, 16, 32])
import torch

model(torch.rand((4,1)))

[print(trace.shape) for trace in model.trace]
torch.Size([4, 16])
torch.Size([4, 32])





[None, None]

ModuleDict: when we need to choose

What if we want to switch to LearkyRelu in our conv_block? We can use ModuleDict to create a dictionary of Module and dynamically switch Module when we want

def conv_block(in_f, out_f, activation='relu', *args, **kwargs):
    
    activations = nn.ModuleDict([
                ['lrelu', nn.LeakyReLU()],
                ['relu', nn.ReLU()]
    ])
    
    return nn.Sequential(
        nn.Conv2d(in_f, out_f, *args, **kwargs),
        nn.BatchNorm2d(out_f),
        activations[activation]
    )
print(conv_block(1, 32,'lrelu', kernel_size=3, padding=1))
print(conv_block(1, 32,'relu', kernel_size=3, padding=1))
Sequential(
  (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): LeakyReLU(negative_slope=0.01)
)
Sequential(
  (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): ReLU()
)

Final implementation

Let's wrap it up everything!

def conv_block(in_f, out_f, activation='relu', *args, **kwargs):
    activations = nn.ModuleDict([
                ['lrelu', nn.LeakyReLU()],
                ['relu', nn.ReLU()]
    ])
    
    return nn.Sequential(
        nn.Conv2d(in_f, out_f, *args, **kwargs),
        nn.BatchNorm2d(out_f),
        activations[activation]
    )

def dec_block(in_f, out_f):
    return nn.Sequential(
        nn.Linear(in_f, out_f),
        nn.Sigmoid()
    )

class MyEncoder(nn.Module):
    def __init__(self, enc_sizes, *args, **kwargs):
        super().__init__()
        self.conv_blocks = nn.Sequential(*[conv_block(in_f, out_f, kernel_size=3, padding=1, *args, **kwargs) 
                       for in_f, out_f in zip(enc_sizes, enc_sizes[1:])])
        
        def forward(self, x):
            return self.conv_blocks(x)
        
class MyDecoder(nn.Module):
    def __init__(self, dec_sizes, n_classes):
        super().__init__()
        self.dec_blocks = nn.Sequential(*[dec_block(in_f, out_f) 
                       for in_f, out_f in zip(dec_sizes, dec_sizes[1:])])
        self.last = nn.Linear(dec_sizes[-1], n_classes)

    def forward(self, x):
        return self.dec_blocks()
    
    
class MyCNNClassifier(nn.Module):
    def __init__(self, in_c, enc_sizes, dec_sizes,  n_classes, activation='relu'):
        super().__init__()
        self.enc_sizes = [in_c, *enc_sizes]
        self.dec_sizes = [32 * 28 * 28, *dec_sizes]

        self.encoder = MyEncoder(self.enc_sizes, activation=activation)
        
        self.decoder = MyDecoder(dec_sizes, n_classes)
        
    def forward(self, x):
        x = self.encoder(x)
        
        x = x.flatten(1) # flat
        
        x = self.decoder(x)
        
        return x

model = MyCNNClassifier(1, [32,64], [1024, 512], 10, activation='lrelu')
print(model)
MyCNNClassifier(
  (encoder): MyEncoder(
    (conv_blocks): Sequential(
      (0): Sequential(
        (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): LeakyReLU(negative_slope=0.01)
      )
      (1): Sequential(
        (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): LeakyReLU(negative_slope=0.01)
      )
    )
  )
  (decoder): MyDecoder(
    (dec_blocks): Sequential(
      (0): Sequential(
        (0): Linear(in_features=1024, out_features=512, bias=True)
        (1): Sigmoid()
      )
    )
    (last): Linear(in_features=512, out_features=10, bias=True)
  )
)

Conclusion

So, in summary.

  • Use Module when you have a big block compose of multiple smaller blocks
  • Use Sequential when you want to create a small block from layers
  • Use ModuleList when you need to iterate through some layers or building blocks and do something
  • Use ModuleDict when you need to parametise some blocks of your model, for example an activation function

That's all folks!

Thank you for reading

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].