All Projects → taosdata → Tdengine

taosdata / Tdengine

Licence: agpl-3.0
An open-source big data platform designed and optimized for the Internet of Things (IoT).

Programming Languages

c
50402 projects - #5 most used programming language
python
139335 projects - #7 most used programming language
java
68154 projects - #9 most used programming language
shell
77523 projects
C#
18002 projects
go
31211 projects - #10 most used programming language

Projects that are alternatives of or similar to Tdengine

Crate
CrateDB is a distributed SQL database that makes it simple to store and analyze massive amounts of data in real-time.
Stars: ✭ 3,254 (-81.34%)
Mutual labels:  database, time-series, iot, industrial-iot
Griddb
GridDB is a next-generation open source database that makes time series IoT and big data fast,and easy.
Stars: ✭ 1,587 (-90.9%)
Mutual labels:  bigdata, database, time-series, iot
Netdata
Real-time performance monitoring, done right! https://www.netdata.cloud
Stars: ✭ 57,056 (+227.27%)
Mutual labels:  time-series, iot, monitoring
Warp10 Platform
The Most Advanced Time Series Platform
Stars: ✭ 227 (-98.7%)
Mutual labels:  database, time-series, iot
Loudml
Loud ML is the first open-source AI solution for ICT and IoT automation
Stars: ✭ 185 (-98.94%)
Mutual labels:  database, time-series, monitoring
Questdb
An open source SQL database designed to process time series data, faster
Stars: ✭ 7,544 (-56.73%)
Mutual labels:  database, time-series, monitoring
Influxdb
Scalable datastore for metrics, events, and real-time analytics
Stars: ✭ 22,577 (+29.5%)
Mutual labels:  database, time-series, monitoring
Hawkular Metrics
Time Series Metrics Engine based on Cassandra
Stars: ✭ 225 (-98.71%)
Mutual labels:  time-series, monitoring
Express Typescript Boilerplate
A delightful way to building a RESTful API with NodeJs & TypeScript by @w3tecch
Stars: ✭ 2,293 (-86.85%)
Mutual labels:  database, monitoring
Hstream
The streaming database built for IoT data storage and real-time processing in the 5G Era
Stars: ✭ 166 (-99.05%)
Mutual labels:  database, iot
Timescaledb
An open-source time-series SQL database optimized for fast ingest and complex queries. Packaged as a PostgreSQL extension.
Stars: ✭ 12,211 (-29.96%)
Mutual labels:  time-series, iot
Collector
pganalyze statistics collector for gathering PostgreSQL metrics and log data
Stars: ✭ 181 (-98.96%)
Mutual labels:  database, monitoring
Choochoo
Training Diary
Stars: ✭ 186 (-98.93%)
Mutual labels:  database, time-series
Adaptive Alerting
Anomaly detection for streaming time series, featuring automated model selection.
Stars: ✭ 152 (-99.13%)
Mutual labels:  time-series, monitoring
Angular5 Iot Dashboard
Multipurpose dashboard admin for IoT softwares, remote control, user interface. Develop your client dashboards in Angular 5 with vast variety of components available.
Stars: ✭ 148 (-99.15%)
Mutual labels:  iot, monitoring
Kapacitor
Open source framework for processing, monitoring, and alerting on time series data
Stars: ✭ 2,095 (-87.98%)
Mutual labels:  time-series, monitoring
Pyodds
An End-to-end Outlier Detection System
Stars: ✭ 141 (-99.19%)
Mutual labels:  database, time-series
Platform
Archived incubation repo for InfluxDB 2.0
Stars: ✭ 213 (-98.78%)
Mutual labels:  database, time-series
Opcua
A client and server implementation of the OPC UA specification written in Rust
Stars: ✭ 202 (-98.84%)
Mutual labels:  iot, monitoring
Snmpcollector
A full featured Generic SNMP data collector with Web Administration Interface for InfluxDB
Stars: ✭ 216 (-98.76%)
Mutual labels:  time-series, monitoring

Build Status Build status Coverage Status CII Best Practices tdengine

TDengine

English | 简体中文 We are hiring, check here

What is TDengine?

TDengine is an open-sourced big data platform under GNU AGPL v3.0, designed and optimized for the Internet of Things (IoT), Connected Cars, Industrial IoT, and IT Infrastructure and Application Monitoring. Besides the 10x faster time-series database, it provides caching, stream computing, message queuing and other functionalities to reduce the complexity and cost of development and operation.

  • 10x Faster on Insert/Query Speeds: Through the innovative design on storage, on a single-core machine, over 20K requests can be processed, millions of data points can be ingested, and over 10 million data points can be retrieved in a second. It is 10 times faster than other databases.

  • 1/5 Hardware/Cloud Service Costs: Compared with typical big data solutions, less than 1/5 of computing resources are required. Via column-based storage and tuned compression algorithms for different data types, less than 1/10 of storage space is needed.

  • Full Stack for Time-Series Data: By integrating a database with message queuing, caching, and stream computing features together, it is no longer necessary to integrate Kafka/Redis/HBase/Spark or other software. It makes the system architecture much simpler and more robust.

  • Powerful Data Analysis: Whether it is 10 years or one minute ago, data can be queried just by specifying the time range. Data can be aggregated over time, multiple time streams or both. Ad Hoc queries or analyses can be executed via TDengine shell, Python, R or Matlab.

  • Seamless Integration with Other Tools: Telegraf, Grafana, Matlab, R, and other tools can be integrated with TDengine without a line of code. MQTT, OPC, Hadoop, Spark, and many others will be integrated soon.

  • Zero Management, No Learning Curve: It takes only seconds to download, install, and run it successfully; there are no other dependencies. Automatic partitioning on tables or DBs. Standard SQL is used, with C/C++, Python, JDBC, Go and RESTful connectors.

Documentation

For user manual, system design and architecture, engineering blogs, refer to TDengine Documentation(中文版请点击这里) for details. The documentation from our website can also be downloaded locally from documentation/tdenginedocs-en or documentation/tdenginedocs-cn.

Building

At the moment, TDengine only supports building and running on Linux systems. You can choose to install from packages or from the source code. This quick guide is for installation from the source only.

To build TDengine, use CMake 3.0.2 or higher versions in the project directory.

Install build dependencies

Ubuntu 16.04 and above & Debian:

sudo apt-get install -y gcc cmake build-essential git

Ubuntu 14.04:

sudo apt-get install -y gcc cmake3 build-essential git binutils-2.26
export PATH=/usr/lib/binutils-2.26/bin:$PATH

To compile and package the JDBC driver source code, you should have a Java jdk-8 or higher and Apache Maven 2.7 or higher installed. To install openjdk-8:

sudo apt-get install -y openjdk-8-jdk

To install Apache Maven:

sudo apt-get install -y  maven

Install build dependencies for taos-tools

We provide a few useful tools such as taosBenchmark (was named taosdemo) and taosdump. They were part of TDengine. From TDengine 2.4.0.0, taosBenchmark and taosdump were not released together with TDengine. By default, TDengine compiling does not include taos-tools. You can use 'cmake .. -DBUILD_TOOLS=true' to make them be compiled with TDengine.

To build the taos-tools on Ubuntu/Debian, the following packages need to be installed.

sudo apt install libjansson-dev libsnappy-dev liblzma-dev libz-dev pkg-config

CentOS 7:

sudo yum install epel-release
sudo yum update
sudo yum install -y gcc gcc-c++ make cmake3 git
sudo ln -sf /usr/bin/cmake3 /usr/bin/cmake

To install openjdk-8:

sudo yum install -y java-1.8.0-openjdk

To install Apache Maven:

sudo yum install -y maven

CentOS 8 & Fedora:

sudo dnf install -y gcc gcc-c++ make cmake epel-release git

To install openjdk-8:

sudo dnf install -y java-1.8.0-openjdk

To install Apache Maven:

sudo dnf install -y maven

Install build dependencies for taos-tools

To build the taos-tools on CentOS, the following packages need to be installed.

sudo yum install zlib-devel xz-devel snappy-devel jansson-devel pkgconfig libatomic

Note: Since snappy lacks pkg-config support (refer to link), it lead a cmake prompt libsnappy not found. But snappy will works well.

Setup golang environment

TDengine includes few components developed by Go language. Please refer to golang.org official documentation for golang environment setup.

Please use version 1.14+. For the user in China, we recommend using a proxy to accelerate package downloading.

go env -w GO111MODULE=on
go env -w GOPROXY=https://goproxy.cn,direct

Get the source codes

First of all, you may clone the source codes from github:

git clone https://github.com/taosdata/TDengine.git
cd TDengine

The connectors for go & grafana and some tools have been moved to separated repositories, so you should run this command in the TDengine directory to install them:

git submodule update --init --recursive

You can modify the file ~/.gitconfig to use ssh protocol instead of https for better download speed. You need to upload ssh public key to GitHub first. Please refer to GitHub official documentation for detail.

[url "[email protected]:"]
    insteadOf = https://github.com/

Build TDengine

On Linux platform

mkdir debug && cd debug
cmake .. && cmake --build .

Note TDengine 2.3.x.0 and later use a component named 'taosAdapter' to play http daemon role by default instead of the http daemon embedded in the early version of TDengine. The taosAdapter is programmed by go language. If you pull TDengine source code to the latest from an existing codebase, please execute 'git submodule update --init --recursive' to pull taosAdapter source code. Please install go language version 1.14 or above for compiling taosAdapter. If you meet difficulties regarding 'go mod', especially you are from China, you can use a proxy to solve the problem.

go env -w GO111MODULE=on
go env -w GOPROXY=https://goproxy.cn,direct

The embedded http daemon still be built from TDengine source code by default. Or you can use the following command to choose to build taosAdapter.

cmake .. -DBUILD_HTTP=false

You can use Jemalloc as memory allocator instead of glibc:

apt install autoconf
cmake .. -DJEMALLOC_ENABLED=true

TDengine build script can detect the host machine's architecture on X86-64, X86, arm64, arm32 and mips64 platform. You can also specify CPUTYPE option like aarch64 or aarch32 too if the detection result is not correct:

aarch64:

cmake .. -DCPUTYPE=aarch64 && cmake --build .

aarch32:

cmake .. -DCPUTYPE=aarch32 && cmake --build .

mips64:

cmake .. -DCPUTYPE=mips64 && cmake --build .

On Windows platform

If you use the Visual Studio 2013, please open a command window by executing "cmd.exe". Please specify "amd64" for 64 bits Windows or specify "x86" is for 32 bits Windows when you execute vcvarsall.bat.

mkdir debug && cd debug
"C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\vcvarsall.bat" < amd64 | x86 >
cmake .. -G "NMake Makefiles"
nmake

If you use the Visual Studio 2019 or 2017:

please open a command window by executing "cmd.exe". Please specify "x64" for 64 bits Windows or specify "x86" is for 32 bits Windows when you execute vcvarsall.bat.

mkdir debug && cd debug
"c:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvarsall.bat" < x64 | x86 >
cmake .. -G "NMake Makefiles"
nmake

Or, you can simply open a command window by clicking Windows Start -> "Visual Studio < 2019 | 2017 >" folder -> "x64 Native Tools Command Prompt for VS < 2019 | 2017 >" or "x86 Native Tools Command Prompt for VS < 2019 | 2017 >" depends what architecture your Windows is, then execute commands as follows:

mkdir debug && cd debug
cmake .. -G "NMake Makefiles"
nmake

On Mac OS X platform

Please install XCode command line tools and cmake. Verified with XCode 11.4+ on Catalina and Big Sur.

mkdir debug && cd debug
cmake .. && cmake --build .

Installing

After building successfully, TDengine can be installed by: (On Windows platform, the following command should be nmake install)

sudo make install

Users can find more information about directories installed on the system in the directory and files section. Since version 2.0, installing from source code will also configure service management for TDengine. Users can also choose to install from packages for it.

To start the service after installation, in a terminal, use:

sudo systemctl start taosd

Then users can use the TDengine shell to connect the TDengine server. In a terminal, use:

taos

If TDengine shell connects the server successfully, welcome messages and version info are printed. Otherwise, an error message is shown.

Install TDengine by apt-get

If you use Debian or Ubuntu system, you can use 'apt-get' command to intall TDengine from official repository. Please use following commands to setup:

wget -qO - http://repos.taosdata.com/tdengine.key | sudo apt-key add -
echo "deb [arch=amd64] http://repos.taosdata.com/tdengine-stable stable main" | sudo tee /etc/apt/sources.list.d/tdengine-stable.list
[Optional] echo "deb [arch=amd64] http://repos.taosdata.com/tdengine-beta beta main" | sudo tee /etc/apt/sources.list.d/tdengine-beta.list
sudo apt-get update
apt-cache policy tdengine
sudo apt-get install tdengine

Quick Run

If you don't want to run TDengine as a service, you can run it in current shell. For example, to quickly start a TDengine server after building, run the command below in terminal: (We take Linux as an example, command on Windows will be taosd.exe)

./build/bin/taosd -c test/cfg

In another terminal, use the TDengine shell to connect the server:

./build/bin/taos -c test/cfg

option "-c test/cfg" specifies the system configuration file directory.

Try TDengine

It is easy to run SQL commands from TDengine shell which is the same as other SQL databases.

create database db;
use db;
create table t (ts timestamp, a int);
insert into t values ('2019-07-15 00:00:00', 1);
insert into t values ('2019-07-15 01:00:00', 2);
select * from t;
drop database db;

Developing with TDengine

Official Connectors

TDengine provides abundant developing tools for users to develop on TDengine. Follow the links below to find your desired connectors and relevant documentation.

Third Party Connectors

The TDengine community has also kindly built some of their own connectors! Follow the links below to find the source code for them.

How to run the test cases and how to add a new test case?

TDengine's test framework and all test cases are fully open source. Please refer to this document for how to run test and develop new test case.

TDengine Roadmap

  • Support event-driven stream computing
  • Support user defined functions
  • Support MQTT connection
  • Support OPC connection
  • Support Hadoop, Spark connections
  • Support Tableau and other BI tools

Contribute to TDengine

Please follow the contribution guidelines to contribute to the project.

Join TDengine WeChat Group

Add WeChat “tdengine” to join the group,you can communicate with other users.

User List

If you are using TDengine and feel it helps or you'd like to do some contributions, please add your company to user list and let us know your needs.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].