All Projects → PacktWorkshops → The-Data-Visualization-Workshop

PacktWorkshops / The-Data-Visualization-Workshop

Licence: MIT License
A New, Interactive Approach to Learning Data Visualization

Programming Languages

Jupyter Notebook
11667 projects

Projects that are alternatives of or similar to The-Data-Visualization-Workshop

Udacity-Data-Analyst-Nanodegree
Repository for the projects needed to complete the Data Analyst Nanodegree.
Stars: ✭ 31 (-47.46%)
Mutual labels:  numpy, pandas, seaborn, matplotlib, data-wrangling
covid-19
Data ETL & Analysis on the global and Mexican datasets of the COVID-19 pandemic.
Stars: ✭ 14 (-76.27%)
Mutual labels:  numpy, pandas, seaborn, matplotlib
Exploratory Data Analysis Visualization Python
Data analysis and visualization with PyData ecosystem: Pandas, Matplotlib Numpy, and Seaborn
Stars: ✭ 78 (+32.2%)
Mutual labels:  numpy, pandas, seaborn, matplotlib
Ai Learn
人工智能学习路线图,整理近200个实战案例与项目,免费提供配套教材,零基础入门,就业实战!包括:Python,数学,机器学习,数据分析,深度学习,计算机视觉,自然语言处理,PyTorch tensorflow machine-learning,deep-learning data-analysis data-mining mathematics data-science artificial-intelligence python tensorflow tensorflow2 caffe keras pytorch algorithm numpy pandas matplotlib seaborn nlp cv等热门领域
Stars: ✭ 4,387 (+7335.59%)
Mutual labels:  numpy, pandas, seaborn, matplotlib
data-analysis-using-python
Data Analysis Using Python: A Beginner’s Guide Featuring NYC Open Data
Stars: ✭ 81 (+37.29%)
Mutual labels:  numpy, pandas, seaborn, matplotlib
datascienv
datascienv is package that helps you to setup your environment in single line of code with all dependency and it is also include pyforest that provide single line of import all required ml libraries
Stars: ✭ 53 (-10.17%)
Mutual labels:  numpy, pandas, seaborn, matplotlib
Mlcourse.ai
Open Machine Learning Course
Stars: ✭ 7,963 (+13396.61%)
Mutual labels:  numpy, pandas, seaborn, matplotlib
Data-Wrangling-with-Python
Simplify your ETL processes with these hands-on data sanitation tips, tricks, and best practices
Stars: ✭ 90 (+52.54%)
Mutual labels:  numpy, pandas, data-wrangling
Python Wechat Itchat
微信机器人,基于Python itchat接口功能实例展示:01-itchat获取微信好友或者微信群分享文章、02-itchat获取微信公众号文章、03-itchat监听微信公众号发送的文章、04 itchat监听微信群或好友撤回的消息、05 itchat获得微信好友信息以及表图对比、06 python打印出微信被删除好友、07 itchat自动回复好友、08 itchat微信好友个性签名词云图、09 itchat微信好友性别比例、10 微信群或微信好友撤回消息拦截、11 itchat微信群或好友之间转发消息
Stars: ✭ 216 (+266.1%)
Mutual labels:  numpy, pandas, matplotlib
Engezny
Engezny is a python package that quickly generates all possible charts from your dataframe and saves them for you, and engezny is only supporting now uni-parameter visualization using the pie, bar and barh visualizations.
Stars: ✭ 25 (-57.63%)
Mutual labels:  numpy, pandas, matplotlib
Python-for-data-analysis
No description or website provided.
Stars: ✭ 18 (-69.49%)
Mutual labels:  numpy, pandas, matplotlib
Windrose
A Python Matplotlib, Numpy library to manage wind data, draw windrose (also known as a polar rose plot), draw probability density function and fit Weibull distribution
Stars: ✭ 208 (+252.54%)
Mutual labels:  numpy, pandas, matplotlib
introduction to ml with python
도서 "[개정판] 파이썬 라이브러리를 활용한 머신 러닝"의 주피터 노트북과 코드입니다.
Stars: ✭ 211 (+257.63%)
Mutual labels:  numpy, pandas, matplotlib
Interactive-Data-Visualization-with-Python
Present your data as an effective and compelling story
Stars: ✭ 71 (+20.34%)
Mutual labels:  pandas, seaborn, geoplotlib
astetik
Astetik takes away the pain from telling visual stories with data on Python
Stars: ✭ 15 (-74.58%)
Mutual labels:  pandas, seaborn, matplotlib
Data-Analyst-Nanodegree
Kai Sheng Teh - Udacity Data Analyst Nanodegree
Stars: ✭ 42 (-28.81%)
Mutual labels:  numpy, pandas, data-wrangling
Python-Data-Visualization
D-Lab's 3 hour introduction to data visualization with Python. Learn how to create histograms, bar plots, box plots, scatter plots, compound figures, and more, using matplotlib and seaborn.
Stars: ✭ 42 (-28.81%)
Mutual labels:  pandas, seaborn, matplotlib
Python-Matematica
Explorando aspectos fundamentais da matemática com Python e Jupyter
Stars: ✭ 41 (-30.51%)
Mutual labels:  numpy, pandas, matplotlib
Machine Learning With Python
Practice and tutorial-style notebooks covering wide variety of machine learning techniques
Stars: ✭ 2,197 (+3623.73%)
Mutual labels:  numpy, pandas, matplotlib
Data Science Types
Mypy stubs, i.e., type information, for numpy, pandas and matplotlib
Stars: ✭ 180 (+205.08%)
Mutual labels:  numpy, pandas, matplotlib

The Data Visualization Workshop

GitHub issues GitHub forks GitHub stars PRs Welcome versions

This is the repository for The Data Visualization Workshop, published by Packt. It contains all the supporting project files necessary to work through the course from start to finish.

Requirements and Setup

The Data Visualization Workshop

To get started with the project files, you'll need to:

  1. Install Jupyter on Windows, Mac, Linux
  2. Install Anaconda on Windows, Mac, Linux

Please note that there are no code files for Chapter 2 and hence there is no corresponding files are uploaded in this repositories.

About The Data Visualization Workshop

The Data Visualization Workshop will help you get started with data visualization, giving you the confidence to choose the best visualization technique to suit your needs. Fun activities and exercises featured throughout the book will keep you engaged as you build interactive visualizations with real data.

What you will learn

  • Understand the importance of data visualization in data science
  • Implement NumPy and pandas operations on real-life datasets
  • Create captivating data visualizations using plotting libraries
  • Use advanced techniques to plot geospatial data on a map
  • Integrate interactive visualizations to a webpage
  • Visualize stock prices with Bokeh and analyze Airbnb data with Matplotlib

Related Workshops

If you've found this repository useful, you might want to check out some of our other workshop titles:

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].