All Projects → tanjeffreyz02 → auto-maple

tanjeffreyz02 / auto-maple

Licence: other
Artificial intelligence software for MapleStory that uses various machine learning and computer vision techniques to navigate challenging in-game environments

Programming Languages

python
139335 projects - #7 most used programming language

Projects that are alternatives of or similar to auto-maple

MapleStory-tool
ijl15.dll for MapleStory
Stars: ✭ 51 (-54.46%)
Mutual labels:  maplestory
MapleEzorsia
v83 edits for creating a custom resolution client
Stars: ✭ 17 (-84.82%)
Mutual labels:  maplestory
LibreMaple-Client
Made-from-scratch Maplestory game client for LibreMaple, fork of JourneyClient
Stars: ✭ 26 (-76.79%)
Mutual labels:  maplestory
quest optimizer
(fixed in a game update) Quest.wz file optimizer for MapleStory, gets rid of most (if not all) in-game lag.
Stars: ✭ 16 (-85.71%)
Mutual labels:  maplestory
MapleClientEditTemplate
An increasingly generic and comprehensive MapleStory client editing framework. Written by Erik A (Minimum Delta). Intended to abstract away some of the MapleStory client editing learning curve.
Stars: ✭ 3 (-97.32%)
Mutual labels:  maplestory
Verdant
An open-source launcher for *Naver Channeling* Korean MapleStory ~ 메이플스토리 네이버 채널링 게임런처
Stars: ✭ 12 (-89.29%)
Mutual labels:  maplestory
AzureV316
AzureMS v316 KMS, i will update it and rewrite it from scratch later on to get a better understanding about everything.
Stars: ✭ 67 (-40.18%)
Mutual labels:  maplestory
MSCalculator
Using Maplestory material and reverse Polish algorithm to complete the Android calculator.
Stars: ✭ 14 (-87.5%)
Mutual labels:  maplestory
maple-fighters
A small online game similar to MapleStory
Stars: ✭ 42 (-62.5%)
Mutual labels:  maplestory

Auto Maple

Auto Maple is an intelligent Python bot that plays MapleStory, a 2D side-scrolling MMORPG, using simulated key presses, TensorFlow machine learning, OpenCV template matching, and other computer vision techniques.

Community-created resources, such as command books for each class and routines for each map, can be found in the resources repository.


Minimap

Auto Maple uses OpenCV template matching to determine the bounds of the minimap as well as the various elements within it, allowing it to accurately track the player's in-game position. If record_layout is set to True, Auto Maple will record the player's previous positions in a quadtree-based Layout object, which is periodically saved to a file in the "layouts" directory. Every time a new routine is loaded, its corresponding layout file, if it exists, will also be loaded. This Layout object uses the A* search algorithm on its stored points to calculate the shortest path from the player to any target location, which can dramatically improve the accuracy and speed at which routines are executed.

Command Books


The above video shows Auto Maple consistently performing a mechanically advanced ability combination.

Designed with modularity in mind, Auto Maple can operate any character in the game as long as it is provided with a list of in-game actions, or a "command book". A command book is a Python file that contains multiple classes, one for each in-game ability, that tells the program what keys it should press and when to press them. Once a command book is imported, its classes are automatically compiled into a dictionary that Auto Maple can then use to interpret commands within routines. Commands have access to all of Auto Maple's global variables, which can allow them to actively change their behavior based on the player's position and the state of the game.

Routines


Click here to view the entire routine.

A routine is a user-created CSV file that tells Auto Maple where to move and what commands to use at each location. A custom compiler within Auto Maple parses through the selected routine and converts it into a list of Component objects that can then be executed by the program. An error message is printed for every line that contains invalid parameters, and those lines are ignored during the conversion.

Below is a summary of the most commonly used routine components:
  • Point stores the commands directly below it and will execute them in that order once the character is within move_tolerance of the specified location. There are also a couple optional keyword arguments:
    • adjust fine-tunes the character's position to be within adjust_tolerance of the target location before executing any commands.
    • frequency tells the Point how often to execute. If set to N, this Point will execute once every N iterations.
    • skip tells the Point whether to run on the first iteration or not. If set to True and frequency is N, this Point will execute on the N-1th iteration.
  • Label acts as a reference point that can help organize the routine into sections as well as create loops.
  • Jump jumps to the given label from anywhere in the routine.
  • Setting updates the specified setting to the given value. It can be placed anywhere in the routine, so different parts of the same routine can have different settings. All editable settings can be found at the bottom of settings.py.

Runes

Auto Maple has the ability to automatically solve "runes", or in-game arrow key puzzles. It first uses OpenCV's color filtration and Canny edge detection algorithms to isolate the arrow keys and reduce as much background noise as possible. Then, it runs multiple inferences on the preprocessed frames using a custom-trained TensorFlow model until two inferences agree. Because of this preprocessing, Auto Maple is extremely accurate at solving runes in all kinds of (often colorful and chaotic) environments.

Video Demonstration

Click below to watch the full video


Setup

  1. Download and install Python3.
  2. Download and install the latest version of CUDA Toolkit.
  3. Download and install Git.
  4. Download and unzip the latest Auto Maple release.
  5. Download the TensorFlow model and unzip the "models" folder into Auto Maple's "assets" directory.
  6. Inside Auto Maple's main directory, open a command prompt and run:
    python -m pip install -r requirements.txt
  7. Lastly, create a desktop shortcut by running:
    python setup.py
    This shortcut uses absolute paths, so feel free to move it wherever you want. However, if you move Auto Maple's main directory, you will need to run python setup.py again to generate a new shortcut. To keep the command prompt open after Auto Maple closes, run the above command with the --stay flag.
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].