All Projects → Safecast → Bgeigienanokit

Safecast / Bgeigienanokit

bGeigieNano is a kit version of the bGeigie mobile survey geiger counter designed to fit into a Pelican Micro Case 1010.

Programming Languages

assembly
5116 projects

Welcome to bGeigie Nano Kit project

Main bGeigie Nano page
Assembly and Operations Manual can be found on the Wiki

The Safecast bGeigie Nano is a mobile, GPS enabled, logging, radiation sensor. It is designed for mounting on the outside of a car window but can be used on bicycles, trains, planes, and other modes of transportation.

It can also be used for taking static readings and contamination findings. In logging mode, the Nano takes a measurement every 5 seconds and logs the time and location coordinates.

Acknowledgements

This work would not exist without the original development by [bidouilles] (https://github.com/bidouilles/bGeigieNano) and contributions of other [safecast] (https://github.com/Safecast/bGeigieNano) developers.

Requirements

Build process

(Needs compiler for example Crosspack-AVR on Mac) http://www.ladyada.net/learn/avr/setup-mac.html

Using the Makefile

export ARDUINODIR=/home/geigie/arduino-1.0.1/
export SERIALDEV=/dev/ttyUSB0
export BOARD=fio
cp -r libraries /home/geigie/arduino-1.0.1/
make
make upload

Using the prebuilt image

You can use directly the prebuilt image to flash the Arduino Fio. Here is an example with Arduino Fio connected to ttyUSB0:

/usr/bin/avrdude -DV -p atmega328p -P /dev/ttyUSB0 -c arduino -b 57600 -U flash:w:bGeigieNano.hex:i

Or Windows Users can download a small program called Xloader (http://russemotto.com/xloader/) and can directly flash a HEX file to the bGiegieNano (assuming you have a FDTI connection. Can be bought at many places like Adafruit, Seeedstudio, Switch-science etc. Download and installed X-loader. Do not use the USB charging port on the Nano, but the 6 pin FTDI connector on the edge of the CPU board. Purchase a https://www.sparkfun.com/products/9873 FTDI breakout adapter.

When you plug this little FTDI breakout board onto the 6 pin header and then plug in via a usb cable into your computer, the Nano will power up by itself (even though the power switch is off). Be careful here as you can plug it in upside down, so match the pins on the FTDI board with the pins on the cpu module.

Monitor the device manager com ports to see the device appear and what com # Windows assigned to the device.

Then Run X-loader, select com port, browse to HEX file, and I selected in the drop down Duemilanove/nano(ATmega328) device. Leave the baud rate at 57600 and hit upload. When it is done, the Nano rebooted/restarted all by itself and is running the new code. Remove the FTDI board and usb cable to computer, and the Nano will power off.

Assembly

Pins assignment

Power consumption

  • Fio: 0.045mA sleep, 6mA at run time
  • OpenLog: 2mA idle, 6mA at maximum recording rate
  • Adafruit Ultimate GPS: 25mA acquisition, 20mA tracking
  • Monochrome OLED 128x32 0.91": 4mA 50% turn-on, 7.8mA 100% turn-on

Estimation

The total current used at run time can be estimated around 36mA (= 6+6+20+4) per second which will result in a consumption of 0.01mAh (= 36mA/3600). So the total log duration if using a battery of 1300mAh will be (1300/.01)/3600 = 36.11 = 36h06m

Summary table

Battery capacity (mAh) Estimated log duration (days hh:mm)
1300 1d 12:06
2600 3d 00:13
6600 7d 15:19

Usage

Once powered on the bGeigieNano will initiliaze a new log file on the SD card, setup the GPS and start counting the CPM.

Sample log

# NEW LOG
# format=1.0.0nano
$BNRDD,204,2012-09-20T16:53:58Z,776,63,33895,A,5641.7788,N,1411.8820,E,9861.20,A,109,9*46
$BNRDD,204,2012-09-20T16:54:03Z,771,61,33956,A,5642.2047,N,1412.9433,E,9862.60,A,109,9*4D
$BNRDD,204,2012-09-20T16:54:08Z,773,70,34026,A,5642.6305,N,1414.0053,E,9865.00,A,109,9*40
$BNRDD,204,2012-09-20T16:54:13Z,768,59,34085,A,5643.0562,N,1415.0662,E,9866.80,A,108,9*4D
$BNRDD,204,2012-09-20T16:54:18Z,765,59,34144,A,5643.4820,N,1416.1277,E,9868.10,A,108,9*4D
$BNRDD,204,2012-09-20T16:54:23Z,776,70,34214,A,5643.9077,N,1417.1884,E,9870.40,A,90,10*4E
$BNRDD,204,2012-09-20T16:54:28Z,790,69,34283,A,5644.3330,N,1418.2491,E,9871.30,A,90,10*44
$BNRDD,204,2012-09-20T16:54:33Z,792,77,34360,A,5644.7576,N,1419.3115,E,9871.40,A,90,10*41
$BNRDD,204,2012-09-20T16:54:38Z,800,73,34433,A,5645.1819,N,1420.3749,E,9872.60,A,90,10*4C
$BNRDD,204,2012-09-20T16:54:43Z,784,57,34490,A,5645.6060,N,1421.4371,E,9873.10,A,89,10*4A
$BNRDD,204,2012-09-20T16:54:48Z,787,58,34548,A,5646.0298,N,1422.4998,E,9874.10,A,89,10*40
$BNRDD,204,2012-09-20T16:54:53Z,792,76,34624,A,5646.4534,N,1423.5620,E,9874.80,A,98,9*73
$BNRDD,204,2012-09-20T16:54:58Z,804,75,34699,A,5646.8769,N,1424.6242,E,9874.30,A,98,9*74
$BNRDD,204,2012-09-20T16:55:03Z,808,65,34764,A,5647.3011,N,1425.6873,E,9877.10,A,98,9*7F
$BNRDD,204,2012-09-20T16:55:08Z,793,55,34819,A,5647.7236,N,1426.7514,E,9876.30,A,89,10*49
$BNRDD,204,2012-09-20T16:55:13Z,799,65,34884,A,5648.1464,N,1427.8159,E,9876.10,A,98,9*7F
$BNRDD,204,2012-09-20T16:55:18Z,795,55,34939,A,5648.5688,N,1428.8810,E,9877.80,A,98,9*7B
$BNRDD,204,2012-09-20T16:55:23Z,774,49,34988,A,5648.9898,N,1429.9472,E,9878.50,A,85,10*46
$BNRDD,204,2012-09-20T16:55:28Z,768,63,35051,A,5649.4098,N,1431.0137,E,9877.40,A,224,8*4A
$BNRDD,204,2012-09-20T16:55:33Z,754,63,35114,A,5649.8297,N,1432.0798,E,9876.30,A,223,8*4F
$BNRDD,204,2012-09-20T16:55:38Z,752,71,35185,A,5650.2496,N,1433.1447,E,9873.20,A,106,9*4C
$BNRDD,204,2012-09-20T16:55:43Z,753,58,35243,A,5650.6698,N,1434.2092,E,9871.30,A,106,9*40
$BNRDD,204,2012-09-20T16:55:48Z,765,70,35313,A,5651.0904,N,1435.2737,E,9869.50,A,106,9*4B

Notes

OpenLog config

The OpenLog should start listening at 9600bps and in Command mode. Here is the content of the CONFIG.TXT file you have to create on the microSD card:

9600,26,3,2

SAFECAST.TXT explanation.

The content of the SAFECAST.TXT file can be altered. Please be carefull not to insert CR/LF (windows edittor does that automatically)

cpmf      cpm factor
bqmf      bq/m2 factor
nm        name  
did       devide id  
gt        geiger type  
gm        geiger mode  
al        alarm threshold  
cn        country code  
tz        timezone  
st        sensor type   
ss        sensor shield  
sh        sensor height  
sm        sensor mode  
dose      Reset total dose  

SoftwareSerial update

To make sure all of the NMEA sentences can be received correctly, we will need to update the _SS_MAX_RX_BUFF definition from arduino-1.0.1/libraries/SoftwareSerial/SoftwareSerial.h header file. Here is the modification:

//#define _SS_MAX_RX_BUFF 64 // RX buffer size -- Old Value is 64
#define _SS_MAX_RX_BUFF 128 // RX buffer size for TinyGPS

Licenses

Licenses for this repository can be found at here

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].