All Projects → chengzhag → DeepPanoContext

chengzhag / DeepPanoContext

Licence: MIT License
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

Programming Languages

python
139335 projects - #7 most used programming language

Projects that are alternatives of or similar to DeepPanoContext

resolutions-2019
A list of data mining and machine learning papers that I implemented in 2019.
Stars: ✭ 19 (-56.82%)
Mutual labels:  gcn
mp-YOLO
The reproduce result for 'Object Detection in Equirectangular Panorama'
Stars: ✭ 23 (-47.73%)
Mutual labels:  panorama
stereo-panorama-viewer
View stereoscopic panoramas in your browser!
Stars: ✭ 23 (-47.73%)
Mutual labels:  panorama
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Stars: ✭ 31 (-29.55%)
Mutual labels:  gcn
Photo-Sphere-Viewer
A JavaScript library to display Photo Sphere panoramas.
Stars: ✭ 1,198 (+2622.73%)
Mutual labels:  panorama
google streetview
A command line tool and module for Google Street View Image API
Stars: ✭ 77 (+75%)
Mutual labels:  panorama
RandomX OpenCL
RandomX OpenCL implementation
Stars: ✭ 26 (-40.91%)
Mutual labels:  gcn
mvGAE
Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders (IJCAI 2018)
Stars: ✭ 27 (-38.64%)
Mutual labels:  gcn
PDN
The official PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf '21)
Stars: ✭ 44 (+0%)
Mutual labels:  gcn
LibAUC
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).
Stars: ✭ 115 (+161.36%)
Mutual labels:  gcn
ldap write support
👥🖎 create, edit and delete LDAP users and groups from Nextcloud
Stars: ✭ 15 (-65.91%)
Mutual labels:  ldif
DGL Chinese Manual
This is the Chinese manual of the graph neural network library DGL, currently contains the User Guide.
Stars: ✭ 61 (+38.64%)
Mutual labels:  gcn
kGCN
A graph-based deep learning framework for life science
Stars: ✭ 91 (+106.82%)
Mutual labels:  gcn
Multiple image stitching
A Python and OpenCV implementation of Image Stitching using Brute Force Matcher and ORB feature descriptures.
Stars: ✭ 22 (-50%)
Mutual labels:  panorama
google-streetview-images
Pull google streetview panoramic images along a route.
Stars: ✭ 45 (+2.27%)
Mutual labels:  panorama
schema2ldif
Schema 2 ldif : tool to convert .schema to .ldif files and mange them live into an openldap server
Stars: ✭ 14 (-68.18%)
Mutual labels:  ldif
equilib
🌎→🗾Equirectangular (360/panoramic) image processing library for Python with minimal dependencies only using Numpy and PyTorch
Stars: ✭ 43 (-2.27%)
Mutual labels:  panorama
A- Guide -to Data Sciecne from mathematics
It is a blueprint to data science from the mathematics to algorithms. It is not completed.
Stars: ✭ 25 (-43.18%)
Mutual labels:  gcn
st-gcn-sl
Spatial Temporal Graph Convolutional Networks for Sign Language (ST-GCN-SL) Recognition
Stars: ✭ 18 (-59.09%)
Mutual labels:  gcn
Literatures-on-GNN-Acceleration
A reading list for deep graph learning acceleration.
Stars: ✭ 50 (+13.64%)
Mutual labels:  gcn

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper][Video]

DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization

Cheng Zhang, Zhaopeng Cui, Cai Chen, Shuaicheng Liu, Bing Zeng, Hujun Bao, Yinda Zhang

teaser pipeline

Introduction

This repo contains data generation, data preprocessing, training, testing, evaluation, visualization code of our ICCV 2021 paper.

Install

Install necessary tools and create conda environment (needs to install anaconda if not available):

sudo apt install xvfb ninja-build freeglut3-dev libglew-dev meshlab
conda env create -f environment.yaml
conda activate Pano3D
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.7/index.html
python project.py build
  • When running python project.py build, the script will run external/build_gaps.sh which requires password for sudo privilege for apt-get install. Please make sure you are running with a user with sudo privilege. If not, please reach your administrator for installation of these libraries and comment out the corresponding lines then run python project.py build.
  • If you encounter /usr/bin/ld: cannot find -lGL problem when building GAPS, please follow this issue.

Since the dataloader loads large number of variables, before training, please follow this to raise the open file descriptor limits of your system. For example, to permanently change the setting, edit /etc/security/limits.conf with a text editor and add the following lines:

*         hard    nofile      500000
*         soft    nofile      500000
root      hard    nofile      500000
root      soft    nofile      500000

Demo

Download the pretrained checkpoints of detector, layout estimation network, and other modules. Then unzip the folder out into the root directory of current project. Since the given checkpoints are trained with current version of our code, which is a refactored version, the results are slightly better than those reported in our paper.

Please run the following command to predict on the given example in demo/input with our full model:

CUDA_VISIBLE_DEVICES=0 WANDB_MODE=dryrun python main.py configs/pano3d_igibson.yaml --model.scene_gcn.relation_adjust True --mode test

Or run without relation optimization:

CUDA_VISIBLE_DEVICES=0 WANDB_MODE=dryrun python main.py configs/pano3d_igibson.yaml --mode test

The results will be saved to out/pano3d/<demo_id>. If nothing goes wrong, you should get the following results:

rgb.png visual.png
det3d.jpg render.png

Data preparation

Our data is rendered with iGibson. Here, we follow their Installation guide to download iGibson dataset, then render and preprocess the data with our code.

  1. Download iGibson dataset with:

    python -m gibson2.utils.assets_utils --download_ig_dataset
  2. Render panorama with:

    python -m utils.render_igibson_scenes --renders 10 --random_yaw --random_obj --horizon_lo --world_lo

    The rendered dataset should be in data/igibson/.

  3. Make models watertight and render/crop single object image:

    python -m utils.preprocess_igibson_obj --skip_mgn

    The processed results should be in data/igibson_obj/.

  4. (Optional) Before proceeding to the training steps, you could visualize dataset ground-truth of data/igibson/ with:

    python -m utils.visualize_igibson

    Results ('visual.png' and 'render.png') should be saved to folder of each camera like data/igibson/Pomaria_0_int/00007.

Training and Testing

Preparation

  1. We use the pretrained weights of Implicit3DUnderstanding for fine-tuning Bdb3d Estimation Network (BEN) and LIEN+LDIF. Please download the pretrained checkpoint and unzip it into out/total3d/20110611514267/.

  2. We use wandb for logging and visualizing experiments. You can follow their quickstart guide to sign up for a free account and login on your machine with wandb login. The training and testing results will be uploaded to your project "deeppanocontext".

  3. Hint: The <XXX_id> in the commands bellow needs to be replaced with the XXX_id trained in the previous steps.

  4. Hint: In the steps bellow, when training or testing with main.py, you can override yaml configurations with command line parameter:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/layout_estimation_igibson.yaml --train.epochs 100

    This might be helpful when debugging or tuning hyper-parameters.

First Stage

2D Detector

Please follow Demo section to download weights for detector before we release full fine-tuning code for detector.

Layout Estimation

Train layout estimation network (HorizonNet) with:

CUDA_VISIBLE_DEVICES=0 python main.py configs/layout_estimation_igibson.yaml

The checkpoint and visualization results will be saved to out/layout_estimation/<layout_estimation_id>/model_best.pth

Save First Stage Outputs

  1. Save predictions of 2D detector and LEN as dateset for stage 2 training:

    CUDA_VISIBLE_DEVICES=0 WANDB_MODE=dryrun python main.py configs/first_stage_igibson.yaml --mode qtest --weight out/layout_estimation/<layout_estimation_id>/model_best.pth

    The first stage outputs should be saved to data/igibson_stage1

  2. (Optional) Visualize stage 1 dataset with:

    python -m utils.visualize_igibson --dataset data/igibson_stage1 --skip_render

Second Stage

Object Reconstruction

Train object reconstruction network (LIEN+LDIF) with:

CUDA_VISIBLE_DEVICES=0 python main.py configs/ldif_igibson.yaml

The checkpoint and visualization results will be saved to out/ldif/<ldif_id>.

Bdb3D Estimation

Train bdb3d estimation network (BEN) with:

CUDA_VISIBLE_DEVICES=0 python main.py configs/bdb3d_estimation_igibson.yaml

The checkpoint and visualization results will be saved to out/bdb3d_estimation/<bdb3d_estimation_id>.

Relation SGCN

  1. Train Relation SGCN without relation branch:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --model.scene_gcn.output_relation False --model.scene_gcn.loss BaseLoss --weight out/bdb3d_estimation/<bdb3d_estimation_id>/model_best.pth out/ldif/<ldif_id>/model_best.pth

    The checkpoint and visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_wo_rel_id>.

  2. Train Relation SGCN with relation branch:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --weight out/relation_scene_gcn/<relation_sgcn_wo_rel_id>/model_best.pth --train.epochs 20 

    The checkpoint and visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_id>.

  3. Fine-tune Relation SGCN end-to-end with relation optimization:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --weight out/relation_scene_gcn/<relation_sgcn_id>/model_best.pth --model.scene_gcn.relation_adjust True --train.batch_size 1 --val.batch_size 1 --device.num_workers 2 --train.freeze shape_encoder shape_decoder --model.scene_gcn.loss_weights.bdb3d_proj 1.0 --model.scene_gcn.optimize_steps 20 --train.epochs 10

    The checkpoint and visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_ro_id>.

Test Full Model

Run:

CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --weight out/relation_scene_gcn/<relation_sgcn_ro_id>/model_best.pth --log.path out/relation_scene_gcn --resume False --finetune True --model.scene_gcn.relation_adjust True --mode qtest --model.scene_gcn.optimize_steps 100

The visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_ro_test_id>.

Citation

If you find our work and code helpful, please consider cite:

@inproceedings{zhang2021deeppanocontext,
  title={DeepPanoContext: Panoramic 3D Scene Understanding With Holistic Scene Context Graph and Relation-Based Optimization},
  author={Zhang, Cheng and Cui, Zhaopeng and Chen, Cai and Liu, Shuaicheng and Zeng, Bing and Bao, Hujun and Zhang, Yinda},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={12632--12641},
  year={2021}
}

@InProceedings{Zhang_2021_CVPR,
    author    = {Zhang, Cheng and Cui, Zhaopeng and Zhang, Yinda and Zeng, Bing and Pollefeys, Marc and Liu, Shuaicheng},
    title     = {Holistic 3D Scene Understanding From a Single Image With Implicit Representation},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {8833-8842}
}

We thank the following great works:

  • Total3DUnderstanding for their well-structured code. We construct our network based on their well-structured code.
  • Coop for their dataset. We used their processed dataset with 2D detector prediction.
  • LDIF for their novel representation method. We ported their LDIF decoder from Tensorflow to PyTorch.
  • Graph R-CNN for their scene graph design. We adopted their GCN implemention to construct our SGCN.
  • Occupancy Networks for their modified version of mesh-fusion pipeline.

If you find them helpful, please cite:

@InProceedings{Nie_2020_CVPR,
author = {Nie, Yinyu and Han, Xiaoguang and Guo, Shihui and Zheng, Yujian and Chang, Jian and Zhang, Jian Jun},
title = {Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes From a Single Image},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
@inproceedings{huang2018cooperative,
  title={Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation},
  author={Huang, Siyuan and Qi, Siyuan and Xiao, Yinxue and Zhu, Yixin and Wu, Ying Nian and Zhu, Song-Chun},
  booktitle={Advances in Neural Information Processing Systems},
  pages={206--217},
  year={2018}
}	
@inproceedings{genova2020local,
    title={Local Deep Implicit Functions for 3D Shape},
    author={Genova, Kyle and Cole, Forrester and Sud, Avneesh and Sarna, Aaron and Funkhouser, Thomas},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    pages={4857--4866},
    year={2020}
}
@inproceedings{yang2018graph,
    title={Graph r-cnn for scene graph generation},
    author={Yang, Jianwei and Lu, Jiasen and Lee, Stefan and Batra, Dhruv and Parikh, Devi},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    pages={670--685},
    year={2018}
}
@inproceedings{mescheder2019occupancy,
  title={Occupancy networks: Learning 3d reconstruction in function space},
  author={Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4460--4470},
  year={2019}
}
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].