All Projects → zadorlab → KinBot

zadorlab / KinBot

Licence: BSD-3-Clause license
Automated reaction pathway search for gas-phase molecules

Programming Languages

python
139335 projects - #7 most used programming language
Smarty
1635 projects
shell
77523 projects

Projects that are alternatives of or similar to KinBot

ReactionMechanismSimulator.jl
The amazing Reaction Mechanism Simulator for simulating large chemical kinetic mechanisms
Stars: ✭ 39 (+95%)
Mutual labels:  chemistry, kinetics
reactorch
A Differentiable Reacting Flow Simulation Package in PyTorch
Stars: ✭ 24 (+20%)
Mutual labels:  combustion, kinetics
cellpy
extract and tweak data from electrochemical tests of cells
Stars: ✭ 46 (+130%)
Mutual labels:  chemistry
pylj
Teaching Utility for Classical Atomistic Simulation.
Stars: ✭ 23 (+15%)
Mutual labels:  chemistry
AlgebraicPetri.jl
Build Petri net models compositionally
Stars: ✭ 49 (+145%)
Mutual labels:  chemistry
py4chemoinformatics
Python for chemoinformatics
Stars: ✭ 78 (+290%)
Mutual labels:  chemistry
xyz2graph
Convert an xyz file into a molecular graph and create a 3D visualisation of the graph.
Stars: ✭ 36 (+80%)
Mutual labels:  chemistry
mdgrad
Pytorch differentiable molecular dynamics
Stars: ✭ 127 (+535%)
Mutual labels:  chemistry
catplot
A Python Library for Energy Profile and Abstract Grid(2D/3D) plotting
Stars: ✭ 31 (+55%)
Mutual labels:  chemistry
mddatasetbuilder
A script to build reference datasets for training neural network potentials from given LAMMPS trajectories.
Stars: ✭ 23 (+15%)
Mutual labels:  chemistry
GLaDOS
Web Interface for ChEMBL @ EMBL-EBI
Stars: ✭ 28 (+40%)
Mutual labels:  chemistry
spectrochempy
SpectroChemPy is a framework for processing, analyzing and modeling spectroscopic data for chemistry with Python
Stars: ✭ 34 (+70%)
Mutual labels:  chemistry
chanim
Animation engine for explanatory chemistry videos
Stars: ✭ 89 (+345%)
Mutual labels:  chemistry
CATmistry
Chemistry, Gamified
Stars: ✭ 15 (-25%)
Mutual labels:  chemistry
PyBox
A box-model that automatically creates and solves equations used to describe the evolution in atmospheric composition using Python with Numba and, optionally, Fortran.
Stars: ✭ 30 (+50%)
Mutual labels:  chemistry
MolecularGraph.jl
Graph-based molecule modeling toolkit for cheminformatics
Stars: ✭ 144 (+620%)
Mutual labels:  chemistry
pem-dataset1
Proton Exchange Membrane (PEM) Fuel Cell Dataset
Stars: ✭ 48 (+140%)
Mutual labels:  chemistry
mongodb-chemistry
Ideas for chemical similarity searches in MongoDB.
Stars: ✭ 23 (+15%)
Mutual labels:  chemistry
qcmaquis
Release-only repository for SCINE QCMaquis, the DMRG software from the Reiher group.
Stars: ✭ 18 (-10%)
Mutual labels:  chemistry
bioclipse.core
Bioclipse2 Core.
Stars: ✭ 21 (+5%)
Mutual labels:  chemistry

Gitter chat

KinBot: Automated reaction pathway search for gas-phase molecules

Description

This repository contains the KinBot code version 2.0, a tool for automatically searching for reactions on the potential energy surface.

If you are using this tool in scientific publications, please reference this git repo and the following publication:

Ruben Van de Vijver, Judit Zádor: KinBot: Automated stationary point search on potential energy surfaces, Computer Physics Communication, 2019, 106947 https://doi.org/10.1016/j.cpc.2019.106947

We appreciate if you send us the DOI of your published paper that used KinBot, so we can feature it here below.

How to Install

Make sure all dependencies are correctly installed. The dependencies are lister here https://github.com/zadorlab/KinBot/wiki/Setting-Up-KinBot-on-Your-System

Clone the project to the place where you want to run it. Make sure you switch to the latest version, e.g., 2.0.5:

git branch 2.0.5

You can find the latest stable version's tag if you click on the Branch button above on this page.

In your local space go into the KinBot/ directory. Run the following:

python setup.py build
python setup.py install

If you do not have admin priveleges, you might have to run

python setup.py build
python setup.py install --user

Moreover, if you plan to modify the code, you need to install it as:

python setup.py build
python setup.py develop --user

Please note that you will need the ase version linked to at https://github.com/zadorlab/ase installed and linked to in your path during the installation of KinBot. This version of ase has changes within it that are local to KinBot, using any other ase versions will likely result in errors when trying to run reaction searches.

How to Run

To run KinBot (which will only explore one well), make an input file (e.g. input.json) and run:

kinbot input.json

To run a full PES search, make an input file (e.g. input.json) and run:

pes input.json

You can find additional command line arguments in the manual.

Documentation

See wiki.

List of files in this project

See list.

Authors

Papers using KinBot

  • Ramasesha, K., Savee, J. D., Zádor, J., Osborn, D. L.: A New Pathway for Intersystem Crossing: Unexpected Products in the O(3P) + Cyclopentene Reaction. J. Phys. Chem. A, 2021, https://doi.org/10.1021/acs.jpca.1c05817.
  • Rogers, C. O, Lockwood, K. S., Nguyen, Q. L. D., Labbe, N. J.: Diol isomer revealed as a source of methyl ketene from propionic acid unimolecular decomposition. Int. J. Chem. Kinet., 2021, 53, 1272–1284. https://doi.org/10.1002/kin.21532
  • Lockwood, K. S., Labbe, N. J.: Insights on keto-hydroperoxide formation from O2 addition to the beta-tetrahydrofuran radical. Proceedings of the Combustion Institute, 2021, 38, 1, 533. https://doi.org/10.1016/j.proci.2020.06.357
  • Sheps, L., Dewyer, A. L., Demireva, M., and Zádor, J.: Quantitative Detection of Products and Radical Intermediates in Low-Temperature Oxidation of Cyclopentane. J. Phys. Chem. A 2021, 125, 20, 4467. https://doi.org/10.1021/acs.jpca.1c02001
  • Zhang, J., Vermeire, F., Van de Vijver, R., Herbinet, O.; Battin-Leclerc, F., Reyniers, M.-F., Van Geem, K. M.: Detailed experimental and kinetic modeling study of 3-carene pyrolysis. Int. J. Chem. Kinet., 2020, 52, 785-795. https://doi.org/10.1002/kin.21400
  • Van de Vijver, R., Zádor, J.: KinBot: Automated stationary point search on potential energy surfaces. Computer Physics Communications, 2020, 248, 106947. https://doi.org/10.1016/j.cpc.2019.106947
  • Joshi, S. P., Seal, P., Pekkanen, T. T., Timonen, R. S., Eskola, A. J.: Direct Kinetic Measurements and Master Equation Modelling of the Unimolecular Decomposition of Resonantly-Stabilized CH2CHCHC(O)OCH3 Radical and an Upper Limit Determination for CH2CHCHC(O)OCH3+O2 Reaction. Z. Phys. Chem., 2020, 234, 1251. https://doi.org/10.1515/zpch-2020-1612

Older Version of KinBot:

  • Van de Vijver, R., Van Geem, K. M., Marin, G. B., Zádor, J.: Decomposition and isomerization of 1-pentanol radicals and the pyrolysis of 1-pentanol. Combustion and Flame, 2018, 196, 500. https://doi.org/10.1016/j.combustflame.2018.05.011
  • Grambow, C. A., Jamal, A., Li, Y.-P., Green, W. H., Zádor, J., Suleimanov, Y. V.: Unimolecular reaction pathways of a g-ketohydroperoxide from combined application of automated reaction discovery methods. J. Am. Chem. Soc., 2018, 140, 1035. https://doi.org/10.1021/jacs.7b11009
  • Rotavera, B., Savee, J. D., Antonov, I. O., Caravan, R. L., Sheps, L., Osborn, D. L., Zádor, J., Taatjes, C. A.: Influence of oxygenation in cyclic hydrocarbons on chain-termination reactions from R + O2: tetrahydropyran and cyclohexane. Proceedings of the Combustion Institute, 2017, 36, 597. https://doi.org/10.1016/j.proci.2016.05.020
  • Antonov, I. O., Zádor, J., Rotavera, B., Papajak, E., Osborn, D. L., Taatjes, C. A., Sheps, L.: Pressure-Dependent Competition among Reaction Pathways from First- and Second-O2 Additions in the Low-Temperature Oxidation of Tetrahydrofuran. J. Phys. Chem. A, 2016, 120 6582. https://doi.org/10.1021/acs.jpca.6b05411
  • Antonov, I. O., Kwok, J., Zádor, J., Sheps, L.: OH + 2-butene: A combined experimental and theoretical study in the 300-800 K temperature range. J. Phys. Chem. A, 2015, 119, 7742. https://doi.org/10.1021/acs.jpca.5b01012
  • Zádor, J., Miller, J.A.: Adventures on the C3H5O potential energy surface: OH + propyne, OH + allene and related reactions. Proceedings of the Combustion Institute, 2015, 35, 181. https://doi.org/10.1016/j.proci.2014.05.103
  • Rotavera, B., Zádor, J., Welz, O., Sheps, L., Scheer, A.M., Savee, J.D., Ali, M.A., Lee, T.S., Simmons, B.A., Osborn, D.L., Violi, A., Taatjes, C.A.: Photoionization mass spectrometric measurements of initial reaction pathways in low-temperature oxidation of 2,5-dimethylhexane. J. Phys. Chem. A, 2014, 44, 10188. https://doi.org/10.1021/jp507811d

Acknowledgement

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations, the Office of Science and the National Nuclear Security Administration, responsible for the planning and preparation of a capable exascale ecosystem including software, applications, hardware, advanced system engineering, and early test bed platforms to support the nation's exascale computing imperative. RVdV was also supported by the AITSTME project as part of the Predictive Theory and Modeling component of the Materials Genome Initiative. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].