All Projects → karvenka → Netsci Project

karvenka / Netsci Project

Network Analysis for Financial Markets

Projects that are alternatives of or similar to Netsci Project

Net Analysis
Tools, libraries and applications to analyze network measurements and detect interference.
Stars: ✭ 64 (+64.1%)
Mutual labels:  jupyter-notebook, network-analysis
Alpha Mind
quantitative security portfolio analysis. The analysis pipeline including data storage abstraction, alpha calculation, ML based alpha combining and portfolio calculation.
Stars: ✭ 171 (+338.46%)
Mutual labels:  jupyter-notebook, stock-market
Stock Market Analysis And Prediction
Stock Market Analysis and Prediction is the project on technical analysis, visualization and prediction using data provided by Google Finance.
Stars: ✭ 112 (+187.18%)
Mutual labels:  jupyter-notebook, stock-market
Ppd599
USC urban data science course series with Python and Jupyter
Stars: ✭ 1,062 (+2623.08%)
Mutual labels:  jupyter-notebook, network-analysis
Pythoncode Tutorials
The Python Code Tutorials
Stars: ✭ 544 (+1294.87%)
Mutual labels:  jupyter-notebook, network-analysis
Simplestockanalysispython
Stock Analysis Tutorial in Python
Stars: ✭ 126 (+223.08%)
Mutual labels:  jupyter-notebook, stock-market
Stocks
Programs for stock prediction and evaluation
Stars: ✭ 155 (+297.44%)
Mutual labels:  jupyter-notebook, stock-market
Deep Learning Machine Learning Stock
Stock for Deep Learning and Machine Learning
Stars: ✭ 240 (+515.38%)
Mutual labels:  jupyter-notebook, stock-market
Stock analysis for quant
Different Types of Stock Analysis in Python, R, Matlab, Excel, Power BI
Stars: ✭ 525 (+1246.15%)
Mutual labels:  jupyter-notebook, stock-market
Stock Prediction Models
Gathers machine learning and deep learning models for Stock forecasting including trading bots and simulations
Stars: ✭ 4,660 (+11848.72%)
Mutual labels:  jupyter-notebook, stock-market
Osmnx Examples
Usage examples, demos, and tutorials for OSMnx.
Stars: ✭ 863 (+2112.82%)
Mutual labels:  jupyter-notebook, network-analysis
Network Analysis Made Simple
An introduction to network analysis and applied graph theory using Python and NetworkX
Stars: ✭ 700 (+1694.87%)
Mutual labels:  jupyter-notebook, network-analysis
Pandas Ta
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators
Stars: ✭ 962 (+2366.67%)
Mutual labels:  jupyter-notebook, stock-market
Mmm Py
Marshall MRMS Mosaic Python Toolkit
Stars: ✭ 37 (-5.13%)
Mutual labels:  jupyter-notebook
Brmp
Bayesian Regression Models in Pyro
Stars: ✭ 38 (-2.56%)
Mutual labels:  jupyter-notebook
Optimal Transport
Optimal transport and generalizations
Stars: ✭ 38 (-2.56%)
Mutual labels:  jupyter-notebook
Flexx Notebooks
Jupyter notebooks with Flexx examples.
Stars: ✭ 38 (-2.56%)
Mutual labels:  jupyter-notebook
Python for data science and machine learning Bootcamp
Repo for Pierian Data course on Udemey
Stars: ✭ 39 (+0%)
Mutual labels:  jupyter-notebook
Hyperbolic zsl
Hyperbolic Visual Embedding Learning for Zero-Shot Recognition (CVPR 2020)
Stars: ✭ 39 (+0%)
Mutual labels:  jupyter-notebook
Parsing Pdfs
Extracting tabular information from PDFs using python
Stars: ✭ 38 (-2.56%)
Mutual labels:  jupyter-notebook

Network Analysis of Financial Markets

(Karthick Venkatesan)

1. Abstract

In this project we have analysed the dynamics of the Financial Markets through Network Analysis.We have built networks of the equities that are part of the S and P 500 index over a range Time Periods between 2007 and 2017 based on Winner Take All and the Minimum Spanning Tree method .Both these methods utilise the correlation coefficient computed between the attributes of these stocks such as Price,Volume,Returns etc . Community detection techniques were then applied to the constructed networks. The resulting communities were compared for consistency with the identified market sections using Standard Industrial Classification code.We also studied the evolution of the network and the communities over the study period and found interesting behaviors. We have compared our results from both the methods for each of our analysis.We created a GEXF file for this dynamic network and visuvalised the same in Gephi a open source network visuvalisation software.The visualization results offer a very intuitive way to look at the overall correlation structure of different the equities in the S and P 500 and evolution of these networks over a period of time .

2. Introduction

Network analysis of Equities is a extensively researched topic and in section 3 we have detailed current literature which was utilised as part of this project.In all the current studies the focus has been on studying the properties of the market in a stationary view for a fixed time period.By leveraging the techniques noted in these current literature we have as part of this study built multiple networks of the stocks in the S and P 500 index for mutiple non overlapping windows of Time Period (T) between 2007 and 2017 and studied how the network evolves and how the communities in the network behave with the changing dynamics of the market.

Below are key Objectives of the project.For each of these items we have compared the results we got for for the networks built based on both these methods.

1. Build network for the stocks in  S and P 500 index based on the correlations between Prices/Volume for Multiple Time Periods using Winner Take All method and Minimum Spanning Tree Method
2. Analyse the topology of the networks in multiple time periods.Does the network of stocks exhibit scale free properties at each of the time period?
3. Detect communities in these networks and find out if the stocks actually trade in groups based on the SIC(Standard Industry Classification) Code.
4. Studied the evolution of these communities 
5. Find important stocks and sectors they belong to based on the Network Properties at Different time periods.
6. Visuvalize the network and also the dynamic evolution of network by building dynamic graphs using Gephi

3. Literature Review

Current Studies about network analysis for stock market can be classified into below categories :

(1) Applying network analysis techniques for different markets and analyze the topological characteristics of each market Statistical Analysis of Financial Markets, Hierarchical structure in financial markets

(2) Propose different correlation metric analysis among various stock markets to suggest different definitions of edges between stocks and study the impact on the network using different edge definitions Network analysis of a financial market based on genuine correlation and threshold method, Network of Equities in Financial Markets, A network perspective of the stock market

3.1. Edge Definition

Approach to construct the edges of stock market network is not unique. In the current literature, multiple measures were investigated to construct the edges between nodes namely Zero-lag correlation,Detrended covariance,Time-lag correlations of prices changes over a certain period of time

3.2. Network Properties

Studies have covered both emerging and mature markets. Authors claim that understanding the topological properties can help to understand correlation patterns among stocks, thus providing guidance for risk management. Topological properties often of interest include degree distribution, clustering and component structure. In this subcategory study, usually only one correlation measure is proposed to establish the connections between nodes. In the introduction session of Statistical Analysis of Financial Markets, the author covered a wide range of previous studies in this category

4. Build Network

4.1 Data Collection

We collected the prices for the stocks that trade in both NASDAQ and the NYSE stock exchange from Eod Data . The data consisted of Opening , Closing prices , Volume information for each trading day for the period of 2007 to 2017.From this data we filtered and selected only the prices that are a part of S and P 500 . We chose the S and P 500 since the index had a well balanced portfolio of stocks from different industry segments .

## Read S and P 500 list
import pandas as pd
import numpy as np
dfsp500 = pd.read_csv('data/SANDP500.csv')
companies=dfsp500['Symbol'].tolist()
companies=np.random.choice(companies, size=500, replace=False)
import glob
import os
path = r'data/NASDAQ'                     
all_files = glob.glob(os.path.join(path, "*.txt"))     
df_from_each_file = (pd.read_csv(f) for f in all_files)
concatenated_df_NAS   = pd.concat(df_from_each_file, ignore_index=True)
concatenated_df_NAS=concatenated_df_NAS[concatenated_df_NAS['<ticker>'].isin(companies)]

path = r'data/NYSE'                     
all_files = glob.glob(os.path.join(path, "*.txt"))     
df_from_each_file = (pd.read_csv(f) for f in all_files)
concatenated_df_NYS   = pd.concat(df_from_each_file, ignore_index=True)
concatenated_df_NYS=concatenated_df_NYS[concatenated_df_NYS['<ticker>'].isin(companies)]

concatenated_df = pd.concat([concatenated_df_NAS,concatenated_df_NYS])
col_p = 'close'
concatenated_df.columns = ['ticker','date','open','high','low','close','vol']
concatenated_df=concatenated_df[concatenated_df['ticker'].isin(companies)]
concatenated_df=concatenated_df.merge(dfsp500,left_on='ticker',right_on='Symbol')
concatenated_df['ticker'] = concatenated_df['ticker']
df_price = concatenated_df[['ticker','date',col_p]]
df_price=df_price.drop_duplicates( keep='last')
df_price['date'] = pd.to_datetime(df_price['date'], format='%Y%m%d', errors='ignore')
df_price.set_index(['date','ticker'],inplace=True)
df_price=df_price.unstack()[col_p]
df_price.reset_index(inplace=True)
df_price.fillna(method='bfill',inplace=True)
df_price.fillna(method='ffill',inplace=True)

4.2 Detrend data - Compute log returns

Of the methods in current literature number we choose Time-lag correlations of prices changes over a certain period of time .One of the keys challenges in computing the correlation on stock prices is that the values are moving time series and have inherent trends which can lead to spurious correlations if the data is not properly normalised.

If we think about a time series of prices, you could write it out as

[P0,P1,P2,...,PN], or [P0,P0+R1,P0+R1+R2,...,P0+R1+...+RN], where Ri = Pi-P(i-1). 

Written this way we can see that the first return R1, contributes to every entry in the series, whereas the last only contributes to one. This gives the early values in the correlation of prices more weight than they should have.

So for computing the correlation we take the difference between the prices for each day giving us the returns for each .We computed the log returns between two days since it has a key benefit of being additive over multiple time periods .

Though log returns can be computed over multiple time periods of 7 , 30 , 60 , 100 days for the sake of simplicity we kept the return window to 1 day.

import scipy.signal
t = 1
for key in df_price.columns:
    if key not in companies:
        continue
    try:
        df_price[key] = np.log(df_price[key]) - np.log(df_price[key].shift(t))
    except:
        print (key)
df_price.set_index('date',inplace=True)
## A quick visualization: detrended data
import matplotlib.pyplot as plt
%matplotlib inline
import random as rn
NUM_COLORS = len(companies)
cm = plt.get_cmap('gist_rainbow')
colors = [cm(i/NUM_COLORS) for i in range(NUM_COLORS)]
rn.seed = len(companies)  # for choosing random colors
fig, ax = plt.subplots(nrows=5,ncols=2,figsize=(20, 20))
y=2007
for row in ax:
    for col in row:
        yfs = str(y) + '0101'
        yfe = str(y) + '1231'
        n = 0
        col.set_ylim([0.5, -0.5])
        for i in df_price.columns:
            df_price.loc[yfs:yfe][i].plot(ax=col,color=colors[n])
            n = n + 1
        y = y + 1
plt.tight_layout()
plt.show()

png

4.3 Compute Correlation matrix for multiple windows

Next we computed the pearson correlation between the log returns.The data is divided into windows of width (T) in order to uncover dynamic characteristics of the networks. The window width corresponds to the number of daily returns included in the computation of the correlation between Stocks. The method of time windows division to construct asset graphs can be found in the literature Asset trees and asset graphs in financial markets

To determine the ideal length of the window we computed the mean correlation for window values of 21,42,63,84 and 105 and plotted the variations in the correlation.As seen in the plot the window of 63 captures the fluctuations of the market well.Values less than this are too noisy and higher than this we lose the sensitivity in the changes in the market .Also from a market perspective 63 days ideally falls into the Quarterly reporting cycle of these companies so we felt it would be appropriate choice

The correlation matrix is then computed based on this window length of 63 by dividing the period between 2007 and 2017 into multiple windows.

import matplotlib.pyplot as plt
%matplotlib inline
corr_dict = {}
T = 1
for w in range(21,126,21):
    x = []
    y = []
    W = w
    for i in range(t,len(df_price),W):
            dkey = i
            corr_dict[dkey]=df_price.iloc[i:(i+W)].corr(method='pearson')
            corr_dict[dkey].fillna(0,inplace=True)
            x.append(dkey)
            y.append(np.mean([abs(j) for j in corr_dict[dkey].values.flatten().tolist()]))
    plt.plot(x,y)
    plt.xlabel('Days')
    plt.ylabel('Mean Correlation')
    plt.legend(list(range(21,126,21)), loc='center left', bbox_to_anchor=(1, 0.5),ncol=1)
plt.show()
W = 63
corr_dict = {}
for i in range(t,len(df_price),W):
      dkey = i
      corr_dict[dkey]=df_price.iloc[i:(i+W)].corr(method='pearson')
      corr_dict[dkey].fillna(0,inplace=True)

png

4.4 Build network - (Winner take all method)

Literature A network perspective of the stock market details the winner take all method where we build a network based on the correlation matrix if the value of the Correlation index is greater than a threshold.

What is the ideal value of threshold ?.Since one the key objectives of the study is to find if the stocks behave in groups we wanted to select a threshold which maximises the modularity .However we were also consious not overfit the data in which case we might loose some of the underlying dynamics at work in the market.

In the next step we built the network based on different thresholds ranging from 0.6 to 0.99 for the windows identified .We then picked the value of the threshold from the values where the modularity is maximum.On analysis of this result we noted that most networks tended to have a high modularity for threshold value between 0.75 and 0.85 .There were certains windows where the threshold for the best modularity was seen to be greater than 0.9 however at this threshold the number edges was very less so in such cases we set the threshold to 0.8 and built the network.We treated both positive and negative correlations the same and looked at the absolute value.

import networkx as nx
import community
def get_modularity(y,threshold):
    df_price_corr = corr_dict[y]
    elist = []
    outdict=df_price_corr.to_dict()
    for i in outdict.keys():
        for j in outdict[i].keys():    
            if abs(outdict[i][j]) > threshold :
                if i == j :
                    continue
                if i < j:
                    elist.append([i,j,dict(weight=abs(outdict[i][j]),start=y,end=y+W)])
                    #elist.append([i,j,dict(start=y,end=y+1)])
                else:
                    None
    #print (len(elist))
    G=nx.Graph()
    G.add_edges_from(elist)
    #print (nx.info(G))
    partition = community.best_partition(G)
    try:
        m = community.modularity(partition, G)
    except:
        m = 0 
    return m
# This will be our list of fractions to run the simulation over
fractions = np.linspace(0.6, 0.99, 20)
M_list = {}
for y in corr_dict.keys():
    M_list[y] = [ get_modularity(y, frac)  for frac in fractions ]

The below is the plot between the threshold value and the computed markdown in the various windows

import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(figsize=(20,10))
for y in corr_dict.keys():
    plt.plot(fractions, M_list[y], lw=2)
plt.legend(list(M_list.keys()), loc='center left', bbox_to_anchor=(1, 0.5),ncol=2)
plt.xlabel('Threshold')
plt.ylabel('Modularity')
plt.show()

png

# Pick value of threshold for each Window (T)
T_val = {}
for y in M_list.keys():
    val, idx = max((val, idx) for (idx, val) in enumerate(M_list[y]))
    if fractions[idx] > 0.8:
        T_val[y] = 0.8
    else:
        T_val[y] = fractions[idx]
    #print (str(y) + ":" + str(T_val[y]))
# Create Edge List
elist_dict={}
for y in corr_dict.keys():
    df_price_corr = corr_dict[y]
    threshold = T_val[y]
    elist = []
    outdict=df_price_corr.to_dict()
    for i in outdict.keys():
        for j in outdict[i].keys():
            if abs(outdict[i][j]) > threshold :
                if i == j :
                    continue
                if i < j:
                    elist.append([i,j,dict(weight=1,start=y,end=y+W-1)])
                else:
                    None
    elist_dict[y] = elist
# Constructing the graph different windows
import networkx as nx
import community
G_dict = {}
for y in elist_dict.keys():
    G=nx.Graph()
    elist = elist_dict[y]
    G.add_edges_from(elist)
    values = dfsp500.set_index('Symbol').to_dict(orient='dict')['Sector']
    for node, value in values.items():
        try:
            G.node[node]['Sector'] = value
        except:
            #name = (value[0:3] + '-' + node)
            #G.add_node(name,Sector=value)
            None
    partition = community.best_partition(G)
    
    deg_cent=dict((k,float(v)) for k,v in nx.degree_centrality(G).items())
    degree = dict((k,float(v)) for k,v in nx.degree(G).items())
    #katz_cent=nx.katz_centrality(G)
    #eigen_cent= dict((k,float(v)) for k,v in nx.eigenvector_centrality(G).items()) 
    close_cent= dict((k,float(v)) for k,v in nx.closeness_centrality(G).items())  
    betw_cent= dict((k,float(v)) for k,v in nx.betweenness_centrality(G).items()) 
    nx.set_node_attributes(G, "community", partition)  
    nx.set_node_attributes(G, "degreecent", deg_cent)
    nx.set_node_attributes(G, "degree", degree)
    #nx.set_node_attributes(G, "katz", katz_cent)
    #nx.set_node_attributes(G, "eigenvector", eigen_cent)
    nx.set_node_attributes(G, "closeness", close_cent)
    nx.set_node_attributes(G, "betweenness", betw_cent)
    nx.set_node_attributes(G, 'start',y)
    nx.set_node_attributes(G, 'end',y+W-1)
    #G.remove_nodes_from(nx.isolates(G)) 
    #T = nx.minimum_spanning_tree(G)
    T = G
    G_dict[y] = T
# Collect the node level attributes for the nodes for all the windows
df_list = []
for k in G_dict.keys():
    G = G_dict[k]
    a = G.node
    df_list.append(pd.DataFrame(a).T.reset_index())
attrib_df = pd.concat(df_list)
attrib_df.fillna(0,inplace=True)
attrib_df1=attrib_df.merge(dfsp500,left_on='index',right_on='Symbol')
attrib_df = attrib_df1[['index','Sector_x','betweenness','closeness','community','degree','degreecent','start','Name']]
attrib_df.columns=['ticker','Sector','Betweeness','Closeness','Community','Degree','DegreeCent','start','Name']
# Collect the graph level  attributes for all the windows
from scipy.stats import linregress
G_val_dict = {}
for Y in G_dict.keys():
    G_val = {}
    G= G_dict[Y]
    G_val['nodes'] =  int(nx.number_of_nodes(G))
    G_val['edges'] =  int(nx.number_of_edges(G))
    #G_val['AvgDegree'] =  nx.average_degree(G)
    G_val['AvgClustering'] = nx.average_clustering(G)
    try:
        G_val['AvgShortestPathLength'] = nx.average_shortest_path_length(G)
    except:
        G_val['AvgShortestPathLength'] = 99999
    try:
        G_val['Diameter'] = nx.diameter(G)
    except:
        G_val['Diameter'] = 99999
    degs = {}
    for n in G.nodes() :
        deg = G.degree(n)
        if deg not in degs.keys() :
            degs[deg] = 0
        degs[deg] += 1
    items = sorted(degs.items())
    x= [k for (k , v ) in items ]
    y= [ v for (k ,v ) in items ]
    xlog= np.array([np.log(k) for (k , v ) in items ])
    ylog= np.array([np.log(v) for (k ,v ) in items ])
    slope,intercept,rvalue,pvalue,stderr=linregress(xlog,ylog)
    G_val['Slope'] = slope
    G_val['No of Communities'] = attrib_df.groupby(by=['start'])['Community'].nunique().ix[Y]
    G_val_dict[Y] = G_val
Gvaldf=pd.DataFrame(G_val_dict).T
/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:32: DeprecationWarning: 
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexing

See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate_ix

The below table lists the network properties for the networks created using the Winner Take All Method Method over multiple Time Periods.

pd.options.display.max_rows = 999
Gvaldf
<style> .dataframe thead tr:only-child th { text-align: right; }
.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}
</style>
AvgClustering AvgShortestPathLength Diameter No of Communities Slope edges nodes
1 0.437301 99999.000000 99999.0 17.0 -0.734717 462.0 139.0
64 0.583921 99999.000000 99999.0 19.0 -0.555489 897.0 178.0
127 0.538656 99999.000000 99999.0 16.0 -1.081694 307.0 112.0
190 0.464502 99999.000000 99999.0 17.0 -0.917059 222.0 84.0
253 0.343108 99999.000000 99999.0 21.0 -1.244365 379.0 149.0
316 0.337280 99999.000000 99999.0 20.0 -1.183432 253.0 121.0
379 0.472535 99999.000000 99999.0 22.0 -0.892980 781.0 171.0
442 0.497699 99999.000000 99999.0 11.0 -0.829045 3798.0 344.0
505 0.439454 99999.000000 99999.0 18.0 -1.018640 696.0 192.0
568 0.429914 99999.000000 99999.0 20.0 -0.967200 1108.0 215.0
631 0.397613 99999.000000 99999.0 18.0 -1.110171 303.0 120.0
694 0.489646 99999.000000 99999.0 20.0 -1.072235 266.0 110.0
757 0.351498 99999.000000 99999.0 14.0 -1.209373 142.0 83.0
820 0.378896 99999.000000 99999.0 22.0 -1.131378 470.0 173.0
883 0.618682 99999.000000 99999.0 14.0 -0.514376 6146.0 309.0
946 0.340429 99999.000000 99999.0 18.0 -1.257725 219.0 106.0
1009 0.111712 99999.000000 99999.0 11.0 -1.735520 33.0 37.0
1072 0.128993 99999.000000 99999.0 22.0 -1.509773 59.0 64.0
1135 0.371843 99999.000000 99999.0 22.0 -1.279903 381.0 173.0
1198 0.732433 1.884846 5.0 4.0 -0.251248 22994.0 409.0
1261 0.586980 99999.000000 99999.0 13.0 -0.751500 2997.0 271.0
1324 0.151453 99999.000000 99999.0 17.0 -1.969121 53.0 59.0
1387 0.374351 99999.000000 99999.0 20.0 -1.112039 464.0 172.0
1450 0.123333 99999.000000 99999.0 15.0 -2.144086 39.0 50.0
1513 0.235170 99999.000000 99999.0 22.0 -1.584047 70.0 70.0
1576 0.050292 99999.000000 99999.0 24.0 -2.596231 35.0 57.0
1639 0.369880 99999.000000 99999.0 26.0 -1.521337 301.0 165.0
1702 0.422181 99999.000000 99999.0 16.0 -1.106065 129.0 71.0
1765 0.203037 99999.000000 99999.0 20.0 -2.030411 60.0 69.0
1828 0.260765 99999.000000 99999.0 20.0 -1.401260 93.0 72.0
1891 0.304440 99999.000000 99999.0 22.0 -1.711807 95.0 79.0
1954 0.448140 99999.000000 99999.0 21.0 -0.996135 234.0 100.0
2017 0.344473 99999.000000 99999.0 36.0 -1.140130 514.0 206.0
2080 0.515361 99999.000000 99999.0 32.0 -0.840034 706.0 187.0
2143 0.323645 99999.000000 99999.0 27.0 -0.978314 244.0 116.0
2206 0.537092 99999.000000 99999.0 26.0 -0.815566 3269.0 342.0
2269 0.443097 99999.000000 99999.0 37.0 -1.063193 521.0 178.0
2332 0.301949 99999.000000 99999.0 43.0 -1.113032 557.0 223.0
2395 0.469023 99999.000000 99999.0 31.0 -0.826418 472.0 136.0
2458 0.454574 99999.000000 99999.0 32.0 -0.914775 1348.0 246.0
2521 0.446138 99999.000000 99999.0 37.0 -1.093756 1307.0 313.0
2584 0.470094 99999.000000 99999.0 23.0 -0.797446 306.0 111.0
2647 0.439164 99999.000000 99999.0 28.0 -0.794508 328.0 109.0
2710 0.352363 99999.000000 99999.0 40.0 -1.442425 297.0 190.0

4.5. Build network - Minimum Spanning Tree Method

One of the negatives of the Winner Take all method is that in certain period the threshold gave us highly noisy data .There were two many edges in the graph and results during this period are difficult to visuvalise .In this section we built the same network based on the Minimum Spanning tree method as noted in Network of Equities in Financial Markets .

In case of the minimum spanning tree method a metric distance dij is calculated using the cross correlation matrix.

		dij = (2(1-Cij))^(0.5)

Where dij is the edge distance between stock i and stock j.

To find the ideal window size for constructing the network we computed the mean distance metric for mutiple windows ranging from 21 to 105 .The plot of the results is below.The Results largely indicate similar pattern to mean correlation we saw in the Winner take all method.Here to we can see that the window size of 63 resonable captures the fluctuations in the market.So we used the window width of 63 to compute the correlation and the corresponding distance metric and built the networks using the Minimum Spanning Tree Method.

import math
import matplotlib.pyplot as plt
%matplotlib inline
def calc_d(x):
    x = round(x,3)
    d = math.sqrt(2 * (1 - x))
    return d
corr_dict = {}
corr_dist_dict = {}
T = 1
W = 63
x = []
y = []
for w in range(21,126,21):
    x = []
    y = []
    W = w
    for i in range(t,len(df_price),W):
            dkey = i
            corr_dict[dkey]=df_price.iloc[i:(i+W)].corr(method='pearson')
            corr_dict[dkey].fillna(1,inplace=True)
            corr_dist_dict[dkey] = corr_dict[dkey].applymap(calc_d)
            x.append(dkey)
            y.append(np.mean([abs(j) for j in corr_dist_dict[dkey].values.flatten().tolist()]))
    plt.plot(x,y)
    plt.xlabel('Days')
    plt.ylabel('Mean Distance')
    plt.legend(list(range(21,126,21)), loc='center left', bbox_to_anchor=(1, 0.5),ncol=1)
W = 63
corr_dict = {}
corr_dist_dict = {}
for i in range(t,len(df_price),W):
      dkey = i
      corr_dict[dkey]=df_price.iloc[i:(i+W)].corr(method='pearson')
      corr_dict[dkey].fillna(1,inplace=True)
      corr_dist_dict[dkey] = corr_dict[dkey].applymap(calc_d)

png

#MST Start 
elistmst_dict={}
for y in corr_dist_dict.keys():
    df_price_corr = corr_dist_dict[y]
    elistmst = []
    outdict=df_price_corr.to_dict()
    for i in outdict.keys():
        for j in outdict[i].keys():
            if (abs(outdict[i][j]) > 0 and (i>j)):
                elistmst.append([i,j,dict(weight=abs(outdict[i][j]),start=y,end=y+W-1)])
    elistmst_dict[y] = elistmst
import networkx as nx
import community
GMST_dict = {}
for y in elistmst_dict.keys():
    G=nx.Graph()
    elist = elistmst_dict[y]
    G.add_edges_from(elist)
    T = nx.minimum_spanning_tree(G)
    G = T
    values = dfsp500.set_index('Symbol').to_dict(orient='dict')['Sector']
    for node, value in values.items():
        try:
            G.node[node]['Sector'] = value
        except:
            #name = (value[0:3] + '-' + node)
            #G.add_node(name,Sector=value)
            None
    partition = community.best_partition(G)
    
    deg_cent=dict((k,float(v)) for k,v in nx.degree_centrality(G).items())
    degree = dict((k,float(v)) for k,v in nx.degree(G).items())
    #katz_cent=nx.katz_centrality(G)
    #eigen_cent= dict((k,float(v)) for k,v in nx.eigenvector_centrality(G).items()) 
    close_cent= dict((k,float(v)) for k,v in nx.closeness_centrality(G).items())  
    betw_cent= dict((k,float(v)) for k,v in nx.betweenness_centrality(G).items()) 
    nx.set_node_attributes(G, "community", partition)  
    nx.set_node_attributes(G, "degreecent", deg_cent)
    nx.set_node_attributes(G, "degree", degree)
    #nx.set_node_attributes(G, "katz", katz_cent)
    #nx.set_node_attributes(G, "eigenvector", eigen_cent)
    nx.set_node_attributes(G, "closeness", close_cent)
    nx.set_node_attributes(G, "betweenness", betw_cent)
    nx.set_node_attributes(G, 'start',y)
    nx.set_node_attributes(G, 'end',y+W)
    T = G
    GMST_dict[y] = T
df_list = []
for k in GMST_dict.keys():
    G = GMST_dict[k]
    a = G.node
    df_list.append(pd.DataFrame(a).T.reset_index())
attribMST_df = pd.concat(df_list)
attribMST_df.fillna(0,inplace=True)
attribMST_df1=attribMST_df.merge(dfsp500,left_on='index',right_on='Symbol')
attribMST_df = attribMST_df1[['index','Sector_x','betweenness','closeness','community','degree','degreecent','start','Name']]
attribMST_df.columns=['ticker','Sector','Betweeness','Closeness','Community','Degree','DegreeCent','start','Name']
from scipy.stats import linregress
G_valMST_dict = {}
for Y in GMST_dict.keys():
    G_val = {}
    G= GMST_dict[Y]
    G_val['nodes'] =  nx.number_of_nodes(G)
    G_val['edges'] =  nx.number_of_edges(G)
    #G_val['AvgDegree'] =  nx.average_degree(G)
    G_val['AvgClustering'] = nx.average_clustering(G)
    try:
        G_val['AvgShortestPathLength'] = nx.average_shortest_path_length(G)
    except:
        G_val['AvgShortestPathLength'] = 99999
    try:
        G_val['Diameter'] = nx.diameter(G)
    except:
        G_val['Diameter'] = 99999
    degs = {}
    for n in G.nodes() :
        deg = G.degree(n)
        if deg not in degs.keys() :
            degs[deg] = 0
        degs[deg] += 1
    items = sorted(degs.items())
    x= [k for (k , v ) in items ]
    y= [ v for (k ,v ) in items ]
    xlog= np.array([np.log(k) for (k , v ) in items ])
    ylog= np.array([np.log(v) for (k ,v ) in items ])
    slope,intercept,rvalue,pvalue,stderr=linregress(xlog,ylog)
    G_val['Slope'] = slope
    G_val['No of Communities'] = attribMST_df.groupby(by=['start'])['Community'].nunique().ix[Y]
    G_valMST_dict[Y] = G_val
GMST_df=pd.DataFrame(G_valMST_dict).T
/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:31: DeprecationWarning: 
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexing

See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate_ix

The below table lists the network properties for the networks created using the Minimum Spanning Tree Method over multiple Time Periods.

GMST_df
<style> .dataframe thead tr:only-child th { text-align: right; }
.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}
</style>
AvgClustering AvgShortestPathLength Diameter No of Communities Slope edges nodes
1 0.0 10.006982 25.0 23.0 -2.302370 429.0 430.0
64 0.0 11.656817 30.0 24.0 -2.511209 431.0 432.0
127 0.0 11.685365 25.0 24.0 -2.414082 434.0 435.0
190 0.0 12.705015 33.0 23.0 -2.094925 436.0 437.0
253 0.0 13.100791 30.0 24.0 -2.414212 436.0 437.0
316 0.0 12.929396 34.0 25.0 -2.226890 440.0 441.0
379 0.0 11.736004 37.0 23.0 -2.397362 442.0 443.0
442 0.0 9.870432 24.0 23.0 -2.176792 444.0 445.0
505 0.0 11.700028 29.0 26.0 -2.423807 448.0 449.0
568 0.0 11.991151 28.0 25.0 -2.337993 448.0 449.0
631 0.0 12.206835 32.0 25.0 -2.094288 447.0 448.0
694 0.0 11.966274 28.0 23.0 -2.401395 448.0 449.0
757 0.0 10.225780 26.0 25.0 -2.400149 448.0 449.0
820 0.0 10.720473 25.0 22.0 -2.286885 450.0 451.0
883 0.0 9.268146 24.0 25.0 -2.270480 451.0 452.0
946 0.0 7.232595 17.0 24.0 -2.094576 453.0 454.0
1009 0.0 11.460324 27.0 23.0 -2.404244 455.0 456.0
1072 0.0 9.898856 27.0 23.0 -2.202451 457.0 458.0
1135 0.0 11.048054 26.0 24.0 -2.306812 458.0 459.0
1198 0.0 10.048669 24.0 25.0 -2.201338 459.0 460.0
1261 0.0 9.375795 21.0 26.0 -2.121953 468.0 469.0
1324 0.0 10.258025 25.0 22.0 -2.509338 466.0 467.0
1387 0.0 10.286589 26.0 26.0 -2.438308 468.0 469.0
1450 0.0 9.377163 25.0 22.0 -2.249755 469.0 470.0
1513 0.0 11.060595 28.0 24.0 -2.509590 470.0 471.0
1576 0.0 9.406258 27.0 23.0 -2.332476 471.0 472.0
1639 0.0 9.620221 21.0 23.0 -2.281254 475.0 476.0
1702 0.0 10.191933 27.0 27.0 -2.419526 475.0 476.0
1765 0.0 9.666815 26.0 25.0 -2.572109 479.0 480.0
1828 0.0 10.022886 25.0 23.0 -2.278903 479.0 480.0
1891 0.0 13.378051 41.0 27.0 -2.429328 481.0 482.0
1954 0.0 12.746888 38.0 26.0 -2.497661 482.0 483.0
2017 0.0 12.801533 33.0 25.0 -2.468109 483.0 484.0
2080 0.0 11.445382 30.0 26.0 -2.523927 486.0 487.0
2143 0.0 11.845514 36.0 25.0 -2.380275 485.0 486.0
2206 0.0 11.853195 31.0 26.0 -2.531080 491.0 492.0
2269 0.0 14.269999 38.0 25.0 -2.344246 493.0 494.0
2332 0.0 11.389670 27.0 24.0 -2.401746 494.0 495.0
2395 0.0 15.049847 33.0 25.0 -2.560258 496.0 497.0
2458 0.0 12.346634 32.0 26.0 -2.450851 497.0 498.0
2521 0.0 16.771448 47.0 25.0 -2.231318 497.0 498.0
2584 0.0 15.656228 36.0 25.0 -2.619341 498.0 499.0
2647 0.0 14.443294 41.0 25.0 -2.464404 497.0 498.0
2710 0.0 14.880367 34.0 26.0 -2.511511 497.0 498.0

5. Result

5.1 Degree distribution and Scale Free Properties

We plotted the degree distribution histogram and also plotted the degree distribution on a log log plotted and regression fitted a line whose slope will give as the Power law exponent.The plot show that network shows scale free properties in most of the windows .The scale free nature is more evident in the Networks generated based on the Minimum Spanning Tree Method .

Winner Take All Method

## Explore graph properties
import matplotlib.pyplot as plt
%matplotlib inline
from scipy.stats import linregress
fig, ax = plt.subplots(nrows=10,ncols=4,figsize=(20, 30))
Y = 1
for row in ax:
    for col in row:
        degs = {}
        for n in G_dict[Y].nodes() :
            deg = G_dict[Y].degree(n)
            if deg not in degs.keys() :
                degs[deg] = 0
            degs[deg] += 1
        items = sorted(degs.items())
        x= [k for (k , v ) in items ]
        y= [ v for (k ,v ) in items ]
        xlog= np.array([np.log(k) for (k , v ) in items ])
        ylog= np.array([np.log(v) for (k ,v ) in items ])
        col.scatter(xlog, ylog)
        slope,intercept,rvalue,pvalue,stderr=linregress(xlog,ylog)
        col.plot(xlog, (slope * xlog + intercept), color='red')
        #ax.set_xscale( 'log' )
        #ax.set_yscale( 'log' )
        col.set_title ( " Day :" + str(Y) + " - Slope :" + str(round(slope,2) ),fontsize=8)
        Y = Y + W
plt.tight_layout()
plt.show()

png

## Explore graph properties
import matplotlib.pyplot as plt
fig, ax = plt.subplots(nrows=10,ncols=4,figsize=(20, 30))
y = 1
for row in ax:
    for col in row:
        deg_dist = [v for k,v in nx.degree(G_dict[y]).items()]
        deg_dist.sort(reverse=True)
        pdf, bins, patch = col.hist(deg_dist, bins=10)
        col.set_title ( " Day :" + str(y),fontsize=8 )
        y = y + W
plt.tight_layout()
plt.show()

png

Minimum Spanning Tree Method

## Explore graph properties
import matplotlib.pyplot as plt
%matplotlib inline
from scipy.stats import linregress
fig, ax = plt.subplots(nrows=10,ncols=4,figsize=(20, 30))
Y = 1
for row in ax:
    for col in row:
        degs = {}
        for n in GMST_dict[Y].nodes() :
            deg = GMST_dict[Y].degree(n)
            if deg not in degs.keys() :
                degs[deg] = 0
            degs[deg] += 1
        items = sorted(degs.items())
        x= [k for (k , v ) in items ]
        y= [ v for (k ,v ) in items ]
        xlog= np.array([np.log(k) for (k , v ) in items ])
        ylog= np.array([np.log(v) for (k ,v ) in items ])
        col.scatter(xlog, ylog)
        slope,intercept,rvalue,pvalue,stderr=linregress(xlog,ylog)
        col.plot(xlog, (slope * xlog + intercept), color='red')
        #ax.set_xscale( 'log' )
        #ax.set_yscale( 'log' )
        col.set_title ( " Day :" + str(Y) + " - Slope :" + str(round(slope,2) ),fontsize=8)
        Y = Y + W
plt.tight_layout()
plt.show()

png

## Explore graph properties
import matplotlib.pyplot as plt
%matplotlib inline
fig, ax = plt.subplots(nrows=10,ncols=4,figsize=(20, 30))
y = 1
for row in ax:
    for col in row:
        deg_dist = [v for k,v in nx.degree(GMST_dict[y]).items()]
        deg_dist.sort(reverse=True)
        pdf, bins, patch = col.hist(deg_dist, bins=10)
        col.set_title ( " Degree Dist Day :" + str(y),fontsize=8 )
        y = y + W
plt.tight_layout()
plt.show()

png

5.2 Average degree of the network over time

We looked at the change in the average degree degree over time .For the networks from the Winner Take All method we can see that this varies widely overtime indicating the dynamic nature of the stock market.The peaks in the graph correspond well to major events in the market such as the 2008 - 2009 subprime crisis.However for the networks based on the MST method the Average degree is constant this is one of the key drawbacks of the MST method were major fluctuations in the market are not well represented in the network.We can also see in the plot that during normal time periods the Average Degree between the networks from both the methods is the same.

import matplotlib.pyplot as plt
%matplotlib inline
avgdf=attrib_df.groupby(by=['start'])['Degree'].mean()
avgdf.plot()
avgdf=attribMST_df.groupby(by=['start'])['Degree'].mean()
avgdf.plot()
plt.xlabel('Days')
plt.ylabel('Average Degree')
plt.legend(['Winner Take All','MST'], loc='center left', bbox_to_anchor=(1, 0.5),ncol=1)
plt.show()

png

5.3 High degree stocks in the network

We looked at the high degree stocks in the network at different windows to get out the important stocks which have high influence or which are a good indicator of how the stock market as whole is moving.The results are below.As we can see the stocks from financials sector have the highest degree in a number of windows .Is there a pattern here?

Winner Take All Method

attrib_df.sort_values(['start','Degree'],ascending=False).groupby(['start']).head(3)[['start','ticker','Name','Degree','Sector']]
<style> .dataframe thead tr:only-child th { text-align: right; }
.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}
</style>
start ticker Name Degree Sector
995 2710 DVN Devon Energy Corp. 14.0 Energy
2774 2710 RIG Transocean 14.0 Energy
2026 2710 MRO Marathon Oil Corp. 12.0 Energy
2576 2647 PRU Prudential Financial 24.0 Financials
3202 2647 UNM Unum Group 24.0 Financials
2516 2647 PNC PNC Financial Services 23.0 Financials
3572 2584 AEE Ameren Corp 18.0 Utilities
4092 2584 LNT Alliant Energy Corp 18.0 Utilities
4257 2584 PNW Pinnacle West Capital 18.0 Utilities
2058 2521 MS Morgan Stanley 39.0 Financials
4819 2521 DFS Discover Financial Services 38.0 Financials
2271 2521 O Realty Income Corporation 36.0 Real Estate
172 2458 AMP Ameriprise Financial 60.0 Financials
4514 2458 ETN Eaton Corporation 56.0 Industrials
5307 2458 MCO Moody's Corp 56.0 Financials
2572 2395 PRU Prudential Financial 29.0 Financials
546 2395 C Citigroup Inc. 28.0 Financials
2056 2395 MS Morgan Stanley 28.0 Financials
2055 2332 MS Morgan Stanley 35.0 Financials
2511 2332 PNC PNC Financial Services 33.0 Financials
475 2332 BK The Bank of New York Mellon Corp. 32.0 Financials
413 2269 BBT BB&T Corporation 27.0 Financials
2510 2269 PNC PNC Financial Services 26.0 Financials
2570 2269 PRU Prudential Financial 26.0 Financials
5261 2206 HON Honeywell Int'l Inc. 105.0 Industrials
3391 2206 WFC Wells Fargo 96.0 Financials
6474 2206 BRK.B Berkshire Hathaway 96.0 Financials
509 2143 BXP Boston Properties 18.0 Real Estate
2716 2143 REG Regency Centers Corporation 17.0 Real Estate
1263 2143 FRT Federal Realty Investment Trust 16.0 Real Estate
167 2080 AMP Ameriprise Financial 27.0 Financials
3021 2080 STI SunTrust Banks 25.0 Financials
3390 2080 WFC Wells Fargo 25.0 Financials
166 2017 AMP Ameriprise Financial 25.0 Financials
1989 2017 MET MetLife Inc. 25.0 Financials
1503 2017 HES Hess Corporation 21.0 Energy
845 1954 D Dominion Resources 20.0 Utilities
3353 1954 WEC Wec Energy Group Inc 18.0 Utilities
3468 1954 XEL Xcel Energy Inc 18.0 Utilities
649 1891 CMS CMS Energy 10.0 Utilities
3467 1891 XEL Xcel Energy Inc 9.0 Utilities
3078 1891 TMK Torchmark Corp. 8.0 Financials
163 1828 AMP Ameriprise Financial 11.0 Financials
2563 1828 PRU Prudential Financial 8.0 Financials
1862 1828 LNC Lincoln National 7.0 Financials
3388 1765 WFC Wells Fargo 7.0 Financials
5812 1765 L Loews Corp. 6.0 Financials
162 1765 AMP Ameriprise Financial 4.0 Financials
2342 1702 PEG Public Serv. Enterprise Inc. 12.0 Utilities
3153 1702 UDR UDR Inc 12.0 Real Estate
3349 1702 WEC Wec Energy Group Inc 12.0 Utilities
2371 1639 PFG Principal Financial Group 21.0 Financials
3348 1639 WEC Wec Energy Group Inc 17.0 Utilities
4077 1639 LNT Alliant Energy Corp 16.0 Utilities
1858 1576 LNC Lincoln National 5.0 Financials
2560 1576 PRU Prudential Financial 3.0 Financials
130 1576 AMG Affiliated Managers Group Inc 2.0 Financials
3462 1513 XEL Xcel Energy Inc 8.0 Utilities
39 1513 AEP American Electric Power 6.0 Utilities
943 1513 DTE DTE Energy Co. 6.0 Utilities
2291 1450 OXY Occidental Petroleum 5.0 Energy
3461 1450 XEL Xcel Energy Inc 4.0 Utilities
5136 1450 IVZ Invesco Ltd. 4.0 Financials
465 1387 BK The Bank of New York Mellon Corp. 20.0 Financials
1257 1387 FRT Federal Realty Investment Trust 19.0 Real Estate
1855 1387 LNC Lincoln National 19.0 Financials
2230 1324 NTRS Northern Trust Corp. 8.0 Financials
532 1324 C Citigroup Inc. 6.0 Financials
3385 1324 WFC Wells Fargo 5.0 Financials
5808 1261 L Loews Corp. 119.0 Financials
5255 1261 HON Honeywell Int'l Inc. 99.0 Industrials
127 1261 AMG Affiliated Managers Group Inc 98.0 Financials
2905 1198 SNA Snap-On Inc. 294.0 Consumer Discretionary
5197 1198 CTAS Cintas Corporation 289.0 Industrials
5624 1198 EFX Equifax Inc. 280.0 Industrials
1852 1135 LNC Lincoln National 18.0 Financials
205 1135 APA Apache Corporation 17.0 Energy
2961 1135 SPG Simon Property Group Inc 16.0 Real Estate
3274 1072 VNO Vornado Realty Trust 9.0 Real Estate
98 1072 AIV Apartment Investment & Mgmt 6.0 Real Estate
498 1072 BXP Boston Properties 6.0 Real Estate
3181 1009 UNM Unum Group 5.0 Financials
280 1009 AVB AvalonBay Communities, Inc. 4.0 Real Estate
1099 1009 EQR Equity Residential 4.0 Real Estate
4208 946 PCAR PACCAR Inc. 22.0 Industrials
1913 946 MAA Mid-America Apartments 17.0 Real Estate
2902 946 SNA Snap-On Inc. 16.0 Consumer Discretionary
5251 883 HON Honeywell Int'l Inc. 169.0 Industrials
5194 883 CTAS Cintas Corporation 152.0 Industrials
730 883 COL Rockwell Collins 149.0 Industrials
3270 820 VNO Vornado Realty Trust 22.0 Real Estate
2590 820 PSA Public Storage 21.0 Real Estate
1096 820 EQR Equity Residential 20.0 Real Estate
276 757 AVB AvalonBay Communities, Inc. 12.0 Real Estate
493 757 BXP Boston Properties 12.0 Real Estate
3269 757 VNO Vornado Realty Trust 11.0 Real Estate
2466 694 PLD Prologis 20.0 Real Estate
492 694 BXP Boston Properties 17.0 Real Estate
1094 694 EQR Equity Residential 17.0 Real Estate
2170 631 NOV National Oilwell Varco Inc. 20.0 Energy
2283 631 OXY Occidental Petroleum 20.0 Energy
2640 631 PXD Pioneer Natural Resources 19.0 Energy
1628 568 JPM JPMorgan Chase & Co. 50.0 Financials
2493 568 PNC PNC Financial Services 44.0 Financials
3098 568 TROW T. Rowe Price Group 42.0 Financials
489 505 BXP Boston Properties 29.0 Real Estate
2463 505 PLD Prologis 28.0 Real Estate
3848 505 EMN Eastman Chemical 28.0 Materials
806 442 CVX Chevron Corp. 110.0 Energy
919 442 DIS The Walt Disney Company 109.0 Consumer Discretionary
5366 442 A Agilent Technologies Inc 104.0 Health Care
3095 379 TROW T. Rowe Price Group 39.0 Financials
2949 379 SPG Simon Property Group Inc 38.0 Real Estate
1243 379 FRT Federal Realty Investment Trust 37.0 Real Estate
523 316 C Citigroup Inc. 18.0 Financials
1088 316 EQR Equity Residential 15.0 Real Estate
1697 316 KIM Kimco Realty 15.0 Real Estate
1696 253 KIM Kimco Realty 23.0 Real Estate
3261 253 VNO Vornado Realty Trust 22.0 Real Estate
2691 253 REG Regency Centers Corporation 21.0 Real Estate
1695 190 KIM Kimco Realty 19.0 Real Estate
2581 190 PSA Public Storage 19.0 Real Estate
267 190 AVB AvalonBay Communities, Inc. 18.0 Real Estate
520 127 C Citigroup Inc. 22.0 Financials
2728 127 RF Regions Financial Corp. 16.0 Financials
2063 127 MTB M&T Bank Corp. 14.0 Financials
997 64 ED Consolidated Edison 24.0 Utilities
931 64 DTE DTE Energy Co. 23.0 Utilities
2916 64 SO Southern Co. 23.0 Utilities
142 1 AMP Ameriprise Financial 21.0 Financials
387 1 BBT BB&T Corporation 21.0 Financials
2687 1 REG Regency Centers Corporation 20.0 Real Estate

Minimum Spanning Tree Method

attribMST_df.sort_values(['start','Degree'],ascending=False).groupby(['start']).head(3)[['start','ticker','Name','Degree','Sector']]
<style> .dataframe thead tr:only-child th { text-align: right; }
.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}
</style>
start ticker Name Degree Sector
8578 2710 HON Honeywell Int'l Inc. 9.0 Industrials
8314 2710 HCP HCP Inc. 7.0 Real Estate
14900 2710 RIG Transocean 7.0 Energy
3996 2647 CMS CMS Energy 11.0 Utilities
1757 2647 APH Amphenol Corp 8.0 Information Technology
14987 2647 ROK Rockwell Automation Inc. 8.0 Industrials
5395 2584 DOV Dover Corp. 9.0 Industrials
11918 2584 MRO Marathon Oil Corp. 9.0 Energy
13622 2584 PEP PepsiCo Inc. 9.0 Consumer Staples
2767 2521 BRK.B Berkshire Hathaway 8.0 Financials
3774 2521 CL Colgate-Palmolive 8.0 Consumer Staples
18505 2521 XEL Xcel Energy Inc 8.0 Utilities
6361 2458 ETN Eaton Corporation 12.0 Industrials
3949 2458 CMI Cummins Inc. 10.0 Industrials
11388 2458 MCO Moody's Corp 10.0 Financials
1313 2395 AMG Affiliated Managers Group Inc 9.0 Financials
9585 2395 ITW Illinois Tool Works 8.0 Industrials
3992 2395 CMS CMS Energy 7.0 Utilities
37 2332 A Agilent Technologies Inc 12.0 Health Care
11958 2332 MS Morgan Stanley 9.0 Financials
14146 2332 PPG PPG Industries 9.0 Materials
4342 2269 COP ConocoPhillips 9.0 Energy
10111 2269 KMB Kimberly-Clark 9.0 Consumer Staples
8571 2269 HON Honeywell Int'l Inc. 8.0 Industrials
8570 2206 HON Honeywell Int'l Inc. 12.0 Industrials
11384 2206 MCO Moody's Corp 11.0 Financials
9846 2206 JPM JPMorgan Chase & Co. 10.0 Financials
430 2143 ADP Automatic Data Processing 14.0 Information Technology
17399 2143 UTX United Technologies 12.0 Industrials
11647 2143 MMC Marsh & McLennan 11.0 Financials
1396 2080 AMP Ameriprise Financial 14.0 Financials
9580 2080 ITW Illinois Tool Works 11.0 Industrials
11690 2080 MMM 3M Company 10.0 Industrials
1395 2017 AMP Ameriprise Financial 14.0 Financials
6926 2017 FIS Fidelity National Information Services 12.0 Information Technology
9579 2017 ITW Illinois Tool Works 9.0 Industrials
11688 1954 MMM 3M Company 10.0 Industrials
1394 1954 AMP Ameriprise Financial 9.0 Financials
2626 1954 BLK BlackRock 8.0 Financials
8565 1891 HON Honeywell Int'l Inc. 14.0 Industrials
13831 1891 PH Parker-Hannifin 9.0 Industrials
16471 1891 TMK Torchmark Corp. 9.0 Financials
16470 1828 TMK Torchmark Corp. 18.0 Financials
1260 1828 AME AMETEK Inc 13.0 Industrials
1392 1828 AMP Ameriprise Financial 9.0 Financials
13697 1765 PFG Principal Financial Group 12.0 Financials
18009 1765 WFC Wells Fargo 11.0 Financials
1391 1765 AMP Ameriprise Financial 10.0 Financials
1390 1702 AMP Ameriprise Financial 13.0 Financials
8562 1702 HON Honeywell Int'l Inc. 12.0 Industrials
13564 1702 PEG Public Serv. Enterprise Inc. 9.0 Utilities
13695 1639 PFG Principal Financial Group 18.0 Financials
17963 1639 WEC Wec Energy Group Inc 11.0 Utilities
1653 1639 APC Anadarko Petroleum Corp 10.0 Energy
1388 1576 AMP Ameriprise Financial 17.0 Financials
16554 1576 TROW T. Rowe Price Group 11.0 Financials
10670 1576 LNC Lincoln National 10.0 Financials
18621 1513 XOM Exxon Mobil Corp. 11.0 Energy
10669 1513 LNC Lincoln National 10.0 Financials
1299 1513 AMG Affiliated Managers Group Inc 9.0 Financials
18488 1450 XEL Xcel Energy Inc 13.0 Utilities
18926 1450 IVZ Invesco Ltd. 13.0 Financials
1386 1450 AMP Ameriprise Financial 12.0 Financials
15011 1387 ROP Roper Industries 14.0 Industrials
5948 1387 EMN Eastman Chemical 12.0 Materials
10667 1387 LNC Lincoln National 10.0 Financials
11678 1324 MMM 3M Company 11.0 Industrials
12854 1324 NTRS Northern Trust Corp. 10.0 Financials
19399 1324 L Loews Corp. 10.0 Financials
8555 1261 HON Honeywell Int'l Inc. 14.0 Industrials
19398 1261 L Loews Corp. 14.0 Financials
416 1261 ADP Automatic Data Processing 9.0 Information Technology
15536 1198 SNA Snap-On Inc. 19.0 Consumer Discretionary
4589 1198 CTAS Cintas Corporation 13.0 Industrials
14216 1198 PRU Prudential Financial 11.0 Financials
2393 1135 BEN Franklin Resources 11.0 Financials
1601 1135 APA Apache Corporation 9.0 Energy
4544 1135 CSX CSX Corp. 9.0 Industrials
18920 1072 IVZ Invesco Ltd. 12.0 Financials
17382 1072 UTX United Technologies 11.0 Industrials
18482 1072 XEL Xcel Energy Inc 11.0 Utilities
412 1009 ADP Automatic Data Processing 11.0 Information Technology
16545 1009 TROW T. Rowe Price Group 9.0 Financials
17161 1009 UNM Unum Group 9.0 Financials
13376 946 PCAR PACCAR Inc. 21.0 Industrials
15532 946 SNA Snap-On Inc. 13.0 Consumer Discretionary
16544 946 TROW T. Rowe Price Group 13.0 Financials
8549 883 HON Honeywell Int'l Inc. 19.0 Industrials
4232 883 COL Rockwell Collins 11.0 Industrials
3704 883 CINF Cincinnati Financial 9.0 Financials
2388 820 BEN Franklin Resources 10.0 Financials
8548 820 HON Honeywell Int'l Inc. 10.0 Industrials
19391 820 L Loews Corp. 10.0 Financials
5850 757 EIX Edison Int'l 12.0 Utilities
6950 757 FISV Fiserv Inc 11.0 Information Technology
8547 757 HON Honeywell Int'l Inc. 11.0 Industrials
11888 694 MRO Marathon Oil Corp. 13.0 Energy
14120 694 PPG PPG Industries 12.0 Materials
19389 694 L Loews Corp. 10.0 Financials
6332 631 ETN Eaton Corporation 8.0 Industrials
8545 631 HON Honeywell Int'l Inc. 8.0 Industrials
11447 631 MET MetLife Inc. 8.0 Financials
4491 568 CSCO Cisco Systems 12.0 Information Technology
6331 568 ETN Eaton Corporation 12.0 Industrials
15922 568 SWK Stanley Black & Decker 11.0 Consumer Discretionary
5934 505 EMN Eastman Chemical 16.0 Materials
5362 505 DOV Dover Corp. 10.0 Industrials
19386 505 L Loews Corp. 9.0 Financials
4885 442 DD Du Pont (E.I.) 12.0 Materials
15920 442 SWK Stanley Black & Decker 12.0 Consumer Discretionary
535 442 AEE Ameren Corp 10.0 Utilities
12663 379 NOV National Oilwell Varco Inc. 10.0 Energy
3305 379 CCL Carnival Corp. 9.0 Consumer Discretionary
10651 379 LNC Lincoln National 9.0 Financials
1280 316 AMG Affiliated Managers Group Inc 9.0 Financials
6503 316 EXPD Expeditors Int'l 9.0 Industrials
1676 316 APD Air Products & Chemicals Inc 8.0 Materials
1631 253 APC Anadarko Petroleum Corp 12.0 Energy
2379 253 BEN Franklin Resources 9.0 Financials
11661 253 MMM 3M Company 9.0 Industrials
2070 190 BAC Bank of America Corp 12.0 Financials
16532 190 TROW T. Rowe Price Group 12.0 Financials
575 190 AEP American Electric Power 8.0 Utilities
15915 127 SWK Stanley Black & Decker 12.0 Consumer Discretionary
10647 127 LNC Lincoln National 9.0 Financials
2905 127 C Citigroup Inc. 8.0 Financials
12834 64 NTRS Northern Trust Corp. 12.0 Financials
15826 64 STT State Street Corp. 10.0 Financials
15562 64 SO Southern Co. 9.0 Utilities
13669 1 PFG Principal Financial Group 13.0 Financials
2199 1 BBT BB&T Corporation 12.0 Financials
18465 1 XEL Xcel Energy Inc 12.0 Utilities

We plotted the count of the sector of the high degree stock in the windows and we can see that Finance stocks definetly are the center of the market network.This kind of makes sense since Finance stocks are structurally dependent on what happens in the other sectors and we can expect them to be the important stocks which are correlated to many of the other stocks in the market.

df1=attrib_df.sort_values(['start','Degree'],ascending=False).groupby(['start']).head(3).groupby(['Sector']).count()['ticker']
df2=attribMST_df.sort_values(['start','Degree'],ascending=False).groupby(['start']).head(3).groupby(['Sector']).count()['ticker']
df3=pd.concat([df1, df2], axis=1).fillna(0)
df3.columns = ['t1','t2']
import matplotlib.pyplot as plt
%matplotlib inline
fig = plt.figure(figsize=(10,10))
df3['t1'].plot(kind='bar',color='red',  position=0, width=0.25)
df3['t2'].plot(kind='bar',color='blue',  position=1, width=0.25)
plt.xticks(rotation=90,fontsize=8)
plt.ylabel('Count')
plt.legend(['Winner Take All','MST'], loc='center left', bbox_to_anchor=(1, 0.5),ncol=1)
plt.plot()
[]

png

5.4 Stocks With High Betweenness Centrality

We looked at the stocks with high betweeness Centrality in the network at different windows to get out the important stocks which because of the position in the network will be good predictors in the movement of prices of the stocks.The results are below.As we can see financials stocks still lead in most periods .

Winner Take All Method

attrib_df.sort_values(['start','Betweeness'],ascending=False).groupby(['start']).head(3)[['start','ticker','Name','Betweeness','Sector']]
<style> .dataframe thead tr:only-child th { text-align: right; }
.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}
</style>
start ticker Name Betweeness Sector
6727 2710 FOXA Twenty-First Century Fox Class A 0.007932 Consumer Discretionary
5244 2710 HOLX Hologic 0.006344 Health Care
6673 2710 MDLZ Mondelez International 0.004696 Consumer Staples
3202 2647 UNM Unum Group 0.011359 Financials
2576 2647 PRU Prudential Financial 0.007036 Financials
1653 2647 JPM JPMorgan Chase & Co. 0.005982 Financials
1874 2584 LNC Lincoln National 0.006935 Financials
1363 2584 GS Goldman Sachs Group 0.006339 Financials
3547 2584 ZION Zions Bancorp 0.005442 Financials
6454 2521 MMC Marsh & McLennan 0.260341 Financials
5493 2521 BDX Becton Dickinson 0.246517 Health Care
5376 2521 A Agilent Technologies Inc 0.240836 Health Care
5221 2458 DOV Dover Corp. 0.098698 Industrials
4514 2458 ETN Eaton Corporation 0.052089 Industrials
2182 2458 NOV National Oilwell Varco Inc. 0.051739 Energy
2572 2395 PRU Prudential Financial 0.016133 Financials
171 2395 AMP Ameriprise Financial 0.008358 Financials
2056 2395 MS Morgan Stanley 0.005031 Financials
3792 2332 DHR Danaher Corp. 0.114964 Health Care
6731 2332 XYL Xylem Inc. 0.111858 Industrials
2414 2332 PH Parker-Hannifin 0.101198 Industrials
544 2269 C Citigroup Inc. 0.015129 Financials
689 2269 COF Capital One Financial 0.012840 Financials
4141 2269 MSFT Microsoft Corp. 0.010529 Information Technology
5261 2206 HON Honeywell Int'l Inc. 0.178959 Industrials
5790 2206 KMB Kimberly-Clark 0.099971 Consumer Staples
3504 2206 XOM Exxon Mobil Corp. 0.096947 Energy
4569 2143 NOC Northrop Grumman Corp. 0.003051 Industrials
4615 2143 UTX United Technologies 0.003051 Industrials
4085 2143 LNT Alliant Energy Corp 0.002730 Utilities
1614 2080 ITW Illinois Tool Works 0.024743 Industrials
442 2080 BEN Franklin Resources 0.021179 Financials
2411 2080 PH Parker-Hannifin 0.017146 Industrials
1047 2017 EMR Emerson Electric Company 0.043283 Industrials
441 2017 BEN Franklin Resources 0.043158 Financials
6016 2017 ROP Roper Industries 0.036402 Industrials
845 1954 D Dominion Resources 0.010613 Utilities
1146 1954 ESS Essex Property Trust, Inc. 0.008675 Real Estate
2343 1954 PEG Public Serv. Enterprise Inc. 0.006047 Utilities
5258 1891 HON Honeywell Int'l Inc. 0.068598 Industrials
3078 1891 TMK Torchmark Corp. 0.047453 Financials
2504 1891 PNC PNC Financial Services 0.039960 Financials
3077 1828 TMK Torchmark Corp. 0.077264 Financials
6446 1828 MMC Marsh & McLennan 0.076123 Financials
163 1828 AMP Ameriprise Financial 0.072502 Financials
3388 1765 WFC Wells Fargo 0.031168 Financials
5812 1765 L Loews Corp. 0.024583 Financials
3755 1765 CINF Cincinnati Financial 0.018437 Financials
2342 1702 PEG Public Serv. Enterprise Inc. 0.013637 Utilities
104 1702 AIV Apartment Investment & Mgmt 0.013070 Real Estate
3349 1702 WEC Wec Energy Group Inc 0.012457 Utilities
2371 1639 PFG Principal Financial Group 0.111754 Financials
2790 1639 ROK Rockwell Automation Inc. 0.061661 Industrials
2013 1639 MRO Marathon Oil Corp. 0.043269 Energy
1858 1576 LNC Lincoln National 0.010065 Financials
159 1576 AMP Ameriprise Financial 0.006494 Financials
130 1576 AMG Affiliated Managers Group Inc 0.003896 Financials
1857 1513 LNC Lincoln National 0.052643 Financials
1348 1513 GS Goldman Sachs Group 0.040921 Financials
3387 1513 WFC Wells Fargo 0.020460 Financials
2291 1450 OXY Occidental Petroleum 0.040816 Energy
158 1450 AMP Ameriprise Financial 0.029762 Financials
5136 1450 IVZ Invesco Ltd. 0.017857 Financials
3735 1387 CBG CBRE Group 0.174827 Real Estate
6013 1387 ROP Roper Industries 0.113051 Industrials
3106 1387 TROW T. Rowe Price Group 0.111419 Financials
2230 1324 NTRS Northern Trust Corp. 0.059286 Financials
532 1324 C Citigroup Inc. 0.039322 Financials
3385 1324 WFC Wells Fargo 0.035995 Financials
4237 1261 PNW Pinnacle West Capital 0.119275 Utilities
3498 1261 XOM Exxon Mobil Corp. 0.096802 Energy
5808 1261 L Loews Corp. 0.051756 Financials
5358 1198 WYN Wyndham Worldwide 0.025580 Consumer Discretionary
2905 1198 SNA Snap-On Inc. 0.020653 Consumer Discretionary
755 1198 COP ConocoPhillips 0.018428 Energy
4539 1135 GE General Electric 0.092994 Industrials
5211 1135 DOV Dover Corp. 0.051663 Industrials
1852 1135 LNC Lincoln National 0.049190 Financials
3274 1072 VNO Vornado Realty Trust 0.014088 Real Estate
498 1072 BXP Boston Properties 0.009269 Real Estate
2960 1072 SPG Simon Property Group Inc 0.007442 Real Estate
280 1009 AVB AvalonBay Communities, Inc. 0.020106 Real Estate
2593 1009 PSA Public Storage 0.019841 Real Estate
1137 1009 ESS Essex Property Trust, Inc. 0.016667 Real Estate
1579 946 HST Host Hotels & Resorts 0.204877 Real Estate
4208 946 PCAR PACCAR Inc. 0.191795 Industrials
3101 946 TROW T. Rowe Price Group 0.117985 Financials
5194 883 CTAS Cintas Corporation 0.065674 Industrials
730 883 COL Rockwell Collins 0.043076 Industrials
5251 883 HON Honeywell Int'l Inc. 0.033122 Industrials
5803 820 L Loews Corp. 0.147791 Financials
6323 820 NWS News Corp. Class B 0.132988 Consumer Discretionary
2590 820 PSA Public Storage 0.127557 Real Estate
2096 757 MUR Murphy Oil 0.073472 Energy
2007 757 MRO Marathon Oil Corp. 0.061427 Energy
2642 757 PXD Pioneer Natural Resources 0.061126 Energy
4997 694 PPG PPG Industries 0.256966 Materials
2362 694 PFG Principal Financial Group 0.255081 Financials
864 694 DD Du Pont (E.I.) 0.243555 Materials
3407 631 WMB Williams Cos. 0.152520 Energy
5800 631 L Loews Corp. 0.145706 Financials
1969 631 MET MetLife Inc. 0.145504 Financials
5682 568 FLS Flowserve Corporation 0.138415 Industrials
4205 568 PCAR PACCAR Inc. 0.136017 Industrials
4119 568 MMM 3M Company 0.102029 Industrials
3848 505 EMN Eastman Chemical 0.228678 Materials
5798 505 L Loews Corp. 0.121144 Financials
3097 505 TROW T. Rowe Price Group 0.120766 Financials
5124 442 IVZ Invesco Ltd. 0.064671 Financials
4632 442 CSCO Cisco Systems 0.055969 Information Technology
919 442 DIS The Walt Disney Company 0.055591 Consumer Discretionary
1966 379 MET MetLife Inc. 0.063732 Financials
4535 379 GE General Electric 0.047302 Industrials
1840 379 LNC Lincoln National 0.045903 Financials
523 316 C Citigroup Inc. 0.140048 Financials
1624 316 JPM JPMorgan Chase & Co. 0.051430 Financials
1839 316 LNC Lincoln National 0.048165 Financials
348 253 BAC Bank of America Corp 0.104403 Financials
2065 253 MTB M&T Bank Corp. 0.075769 Financials
1470 253 HD Home Depot 0.065637 Consumer Discretionary
2581 190 PSA Public Storage 0.115885 Real Estate
2729 190 RF Regions Financial Corp. 0.074904 Financials
320 190 AXP American Express Co 0.031737 Financials
389 127 BBT BB&T Corporation 0.184087 Financials
4576 127 TRV The Travelers Companies Inc. 0.183383 Financials
3446 127 XEL Xcel Energy Inc 0.176740 Utilities
4301 64 STT State Street Corp. 0.076092 Financials
3482 64 XOM Exxon Mobil Corp. 0.066149 Energy
2539 64 PRU Prudential Financial 0.046668 Financials
142 1 AMP Ameriprise Financial 0.026139 Financials
116 1 AMG Affiliated Managers Group Inc 0.025558 Financials
1032 1 EMR Emerson Electric Company 0.022638 Industrials

Minimum Spanning Tree Method

attribMST_df.sort_values(['start','Betweeness'],ascending=False).groupby(['start']).head(3)[['start','ticker','Name','Betweeness','Sector']]
<style> .dataframe thead tr:only-child th { text-align: right; }
.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}
</style>
start ticker Name Betweeness Sector
2418 2710 BEN Franklin Resources 0.649713 Financials
18946 2710 IVZ Invesco Ltd. 0.581805 Financials
8578 2710 HON Honeywell Int'l Inc. 0.477113 Industrials
17187 2647 UNM Unum Group 0.570723 Financials
2109 2647 BAC Bank of America Corp 0.565530 Financials
9589 2647 ITW Illinois Tool Works 0.548996 Industrials
10686 2584 LNC Lincoln National 0.623492 Financials
11038 2584 MA Mastercard Inc. 0.599686 Information Technology
13710 2584 PFG Principal Financial Group 0.509717 Financials
2767 2521 BRK.B Berkshire Hathaway 0.618615 Financials
11653 2521 MMC Marsh & McLennan 0.543698 Financials
2371 2521 BDX Becton Dickinson 0.524445 Health Care
1402 2458 AMP Ameriprise Financial 0.654670 Financials
11388 2458 MCO Moody's Corp 0.632002 Financials
6361 2458 ETN Eaton Corporation 0.462152 Industrials
9453 2395 IR Ingersoll-Rand PLC 0.625261 Industrials
18941 2395 IVZ Invesco Ltd. 0.606101 Financials
1313 2395 AMG Affiliated Managers Group Inc 0.553152 Financials
2104 2332 BAC Bank of America Corp 0.720245 Financials
11958 2332 MS Morgan Stanley 0.605990 Financials
2940 2332 C Citigroup Inc. 0.493196 Financials
18017 2269 WFC Wells Fargo 0.675696 Financials
3726 2269 CINF Cincinnati Financial 0.547420 Financials
2763 2269 BRK.B Berkshire Hathaway 0.489289 Financials
9846 2206 JPM JPMorgan Chase & Co. 0.680760 Financials
14232 2206 PRU Prudential Financial 0.601696 Financials
15816 2206 STI SunTrust Banks 0.509497 Financials
430 2143 ADP Automatic Data Processing 0.642566 Information Technology
11647 2143 MMC Marsh & McLennan 0.627954 Financials
17399 2143 UTX United Technologies 0.569319 Industrials
1396 2080 AMP Ameriprise Financial 0.721395 Financials
9580 2080 ITW Illinois Tool Works 0.666124 Industrials
11558 2080 MKC McCormick & Co. 0.279403 Consumer Staples
1395 2017 AMP Ameriprise Financial 0.750213 Financials
15021 2017 ROP Roper Industries 0.543654 Industrials
15857 2017 STT State Street Corp. 0.501954 Financials
2626 1954 BLK BlackRock 0.657465 Financials
11468 1954 MET MetLife Inc. 0.614263 Financials
14228 1954 PRU Prudential Financial 0.511184 Financials
8565 1891 HON Honeywell Int'l Inc. 0.641060 Industrials
17395 1891 UTX United Technologies 0.638150 Industrials
9577 1891 ITW Illinois Tool Works 0.495383 Industrials
16470 1828 TMK Torchmark Corp. 0.720504 Financials
11642 1828 MMC Marsh & McLennan 0.528795 Financials
10674 1828 LNC Lincoln National 0.479425 Financials
1391 1765 AMP Ameriprise Financial 0.751050 Financials
19406 1765 L Loews Corp. 0.505638 Financials
13697 1765 PFG Principal Financial Group 0.450503 Financials
1390 1702 AMP Ameriprise Financial 0.836793 Financials
14532 1702 R Ryder System 0.409247 Industrials
19014 1702 DFS Discover Financial Services 0.320586 Financials
13695 1639 PFG Principal Financial Group 0.847559 Financials
2577 1639 BK The Bank of New York Mellon Corp. 0.352938 Financials
15543 1639 SNA Snap-On Inc. 0.340600 Consumer Discretionary
1388 1576 AMP Ameriprise Financial 0.802485 Financials
10670 1576 LNC Lincoln National 0.483489 Financials
16554 1576 TROW T. Rowe Price Group 0.348268 Financials
10669 1513 LNC Lincoln National 0.680996 Financials
18621 1513 XOM Exxon Mobil Corp. 0.601379 Energy
4330 1513 COP ConocoPhillips 0.507735 Energy
1386 1450 AMP Ameriprise Financial 0.752720 Financials
18926 1450 IVZ Invesco Ltd. 0.627248 Financials
13252 1450 OXY Occidental Petroleum 0.332039 Energy
15011 1387 ROP Roper Industries 0.660618 Industrials
16551 1387 TROW T. Rowe Price Group 0.586394 Financials
5948 1387 EMN Eastman Chemical 0.555885 Materials
12854 1324 NTRS Northern Trust Corp. 0.663861 Financials
18924 1324 IVZ Invesco Ltd. 0.633735 Financials
11678 1324 MMM 3M Company 0.539462 Industrials
1383 1261 AMP Ameriprise Financial 0.703993 Financials
19398 1261 L Loews Corp. 0.545069 Financials
17253 1261 UPS United Parcel Service 0.449057 Industrials
15536 1198 SNA Snap-On Inc. 0.704655 Consumer Discretionary
5813 1198 EFX Equifax Inc. 0.546698 Industrials
4589 1198 CTAS Cintas Corporation 0.530249 Industrials
2393 1135 BEN Franklin Resources 0.666307 Financials
14127 1135 PPG PPG Industries 0.571020 Materials
4544 1135 CSX CSX Corp. 0.549951 Industrials
18920 1072 IVZ Invesco Ltd. 0.684374 Financials
17382 1072 UTX United Technologies 0.618229 Industrials
2392 1072 BEN Franklin Resources 0.519780 Financials
16545 1009 TROW T. Rowe Price Group 0.659050 Financials
5414 1009 DOW Dow Chemical 0.563267 Materials
17161 1009 UNM Unum Group 0.558852 Financials
13376 946 PCAR PACCAR Inc. 0.769189 Industrials
15532 946 SNA Snap-On Inc. 0.619479 Consumer Discretionary
16544 946 TROW T. Rowe Price Group 0.426928 Financials
8549 883 HON Honeywell Int'l Inc. 0.775314 Industrials
4584 883 CTAS Cintas Corporation 0.551220 Industrials
18171 883 WMB Williams Cos. 0.499975 Energy
11626 820 MMC Marsh & McLennan 0.647800 Financials
8548 820 HON Honeywell Int'l Inc. 0.545726 Industrials
16542 820 TROW T. Rowe Price Group 0.537194 Financials
19390 757 L Loews Corp. 0.685513 Financials
11889 757 MRO Marathon Oil Corp. 0.625609 Energy
8547 757 HON Honeywell Int'l Inc. 0.413511 Industrials
14120 694 PPG PPG Industries 0.644525 Materials
13680 694 PFG Principal Financial Group 0.556997 Financials
16012 694 SWN Southwestern Energy 0.511855 Energy
18167 631 WMB Williams Cos. 0.654137 Energy
12667 631 NOV National Oilwell Varco Inc. 0.574091 Energy
13239 631 OXY Occidental Petroleum 0.520811 Energy
13370 568 PCAR PACCAR Inc. 0.598444 Industrials
6331 568 ETN Eaton Corporation 0.580038 Industrials
5363 568 DOV Dover Corp. 0.558415 Industrials
5934 505 EMN Eastman Chemical 0.743458 Materials
1283 505 AMG Affiliated Managers Group Inc 0.526646 Financials
16537 505 TROW T. Rowe Price Group 0.470168 Financials
17372 442 UTX United Technologies 0.709607 Industrials
7 442 A Agilent Technologies Inc 0.599770 Health Care
5141 442 DIS The Walt Disney Company 0.457273 Consumer Discretionary
16535 379 TROW T. Rowe Price Group 0.627205 Financials
17635 379 VNO Vornado Realty Trust 0.544936 Real Estate
15611 379 SPG Simon Property Group Inc 0.532274 Real Estate
6503 316 EXPD Expeditors Int'l 0.630099 Industrials
13674 316 PFG Principal Financial Group 0.579633 Financials
10650 316 LNC Lincoln National 0.545993 Financials
17193 253 UNP Union Pacific 0.610661 Industrials
12057 253 MTB M&T Bank Corp. 0.568301 Financials
2071 253 BAC Bank of America Corp 0.532743 Financials
14728 190 RF Regions Financial Corp. 0.664726 Financials
2070 190 BAC Bank of America Corp 0.533955 Financials
2862 190 BXP Boston Properties 0.514363 Real Estate
2905 127 C Citigroup Inc. 0.668533 Financials
793 127 AIG American International Group, Inc. 0.544492 Financials
16575 127 TRV The Travelers Companies Inc. 0.536425 Financials
12834 64 NTRS Northern Trust Corp. 0.600108 Financials
15826 64 STT State Street Corp. 0.581946 Financials
9812 64 JPM JPMorgan Chase & Co. 0.549021 Financials
13669 1 PFG Principal Financial Group 0.658857 Financials
2067 1 BAC Bank of America Corp 0.626898 Financials
1363 1 AMP Ameriprise Financial 0.535597 Financials

We plotted the count of the sector of the high betweenness stocks in the windows and we can see that Finance stocks still lead however industrials come in number two.

df1=attrib_df.sort_values(['start','Betweeness'],ascending=False).groupby(['start']).head(3).groupby(['Sector']).count()['ticker']
df2=attribMST_df.sort_values(['start','Betweeness'],ascending=False).groupby(['start']).head(3).groupby(['Sector']).count()['ticker']
df3=pd.concat([df1, df2], axis=1).fillna(0)
df3.columns = ['t1','t2']
import matplotlib.pyplot as plt
%matplotlib inline
fig = plt.figure(figsize=(10,10))
df3['t1'].plot(kind='bar',color='red',  position=0, width=0.25)
df3['t2'].plot(kind='bar',color='blue',  position=1, width=0.25)
plt.xticks(rotation=90,fontsize=8)
plt.ylabel('Count')
plt.legend(['Winner Take All','MST'], loc='center left', bbox_to_anchor=(1, 0.5),ncol=1)
plt.plot()
[]

png

5.5. Communities detected over time

We looked at the number of communities detected over different periods.The variation in the number of communities denotes the dynamic nature of the market where a number of new communities of stocks are formed in each window and each of which can die or continue into subsequent periods

import matplotlib.pyplot as plt
%matplotlib inline
cdf=attrib_df.groupby(by=['start'])['Community'].nunique()
cdf.plot()
cdf=attribMST_df.groupby(by=['start'])['Community'].nunique()
cdf.plot()
plt.legend(['Winner Take All','MST'], loc='center left', bbox_to_anchor=(1, 0.5),ncol=1)
plt.xlabel('Days')
plt.ylabel('No of Communities')
plt.show()

png

5.6 Jaccard Similarity of Communities Detected with Sector Code

One the key points we wanted to look as part of the project was too see if the network created based on the stock prizes has any relationship to the SIC(Standard Industry classification Code) of these stocks .That is do the Financial,Industrial and IT stocks trade in a group ?.So to study the similarity of the communities detected with the SIC code of these stocks in the SP500 we computed the Jaccard similarity coefficient of these communities in each of the time windows with the stock list grouped by industry code.

We converted the stock list in the communities detected and the stock list as per the SIC code into a binary matrix.The presence of the stock in the community/group is denoted by 1 and the absence by 0.

Given two objects, A and B, each with n binary attributes, the Jaccard coefficient is a useful measure of the overlap that A and B share with their attributes. Each attribute of A and B can either be 0 or 1. The total number of each combination of attributes for both A and B are specified as follows:

- M_11 represents the total number of attributes where A and B both have a value of 1.
- M_01 represents the total number of attributes where the attribute of A is 0 and the attribute of B is 1.
- M_10 represents the total number of attributes where the attribute of A is 1 and the attribute of B is 0.
- M_00 represents the total number of attributes where A and B both have a value of 0.

Each attribute must fall into one of these four categories, meaning that M_11 + M_01 + M_10 + M_00 = n.

The Jaccard similarity coefficient, J, is given as

$$J = {M_{11} \over M_{01} + M_{10} + M_{11}}$$

So if a particular community has a Jaccard coefficient of more than 0.25 with the the group of stocks classified by the SIC code we classified the community as that particular SIC code .The plot is below and provides a interesting result.

So as we can visuvalize some sectors are well correlated or connected and the communities detected clearly indicate these stocks trade in groups over different periods

Finance
Real Estate
Utilities
Energy
Telecommunication
Industrials

However , the interesting result is that there are certain sectors which don't trade as groups .We don't see any communities being detected in these sectors.This seems to indicate that these sectors has various other stock specific factors at play in the market and they don't generally trade as a group

Information Technology
Materials
Consumer Staples
Consumer Discretionary
Health Care
cmatrix = attrib_df.groupby(by=['start','Community','ticker'])['ticker'].count().unstack()
cmatrix.fillna(0,inplace=True)
smatrix = attrib_df.groupby(by=['Sector','ticker'])['ticker'].count().unstack()
smatrix.fillna(0,inplace=True)
smatrix[smatrix != 0] = 1
csmatrix=pd.concat([smatrix,cmatrix])
jval = {}
for idxs,rows  in smatrix.iterrows():
    xlist = []
    ylist = []
    for idxc,rowc in cmatrix.iterrows():
        x = [int(i) for i in rows]
        y = [int(i) for i in rowc]
        jc = (np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum()))
        if jc > 0.25:
            xlist.append(idxc[0])
            ylist.append(jc)
    jval[idxs] = [xlist,ylist]
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(figsize=(20,10))
cm = plt.get_cmap('gist_rainbow')
NUM_COLORS = 11
colors = [cm(i) for i in np.linspace(0,1,NUM_COLORS)]
color_dict=dict(zip(list(jval.keys()), colors))
for key in jval:
    x = jval[key][0]
    y = jval[key][1]
    plt.scatter(x,y,color=color_dict[key],label=key)
    
#plt.legend(list(jval.keys()), loc='center left', bbox_to_anchor=(1, 0.5))
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.xlabel('Days')
plt.ylabel('Jaccard Simmilarity')
plt.title('Community Evolution-Winner Take All')
plt.show()

png

cmatrix = attribMST_df.groupby(by=['start','Community','ticker'])['ticker'].count().unstack()
cmatrix.fillna(0,inplace=True)
smatrix = attribMST_df.groupby(by=['Sector','ticker'])['ticker'].count().unstack()
smatrix.fillna(0,inplace=True)
smatrix[smatrix != 0] = 1
csmatrix=pd.concat([smatrix,cmatrix])
jval = {}
for idxs,rows  in smatrix.iterrows():
    xlist = []
    ylist = []
    for idxc,rowc in cmatrix.iterrows():
        x = [int(i) for i in rows]
        y = [int(i) for i in rowc]
        jc = (np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum()))
        if jc > 0.25:
            xlist.append(idxc[0])
            ylist.append(jc)
    jval[idxs] = [xlist,ylist]
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(figsize=(20,10))
cm = plt.get_cmap('gist_rainbow')
NUM_COLORS = 11
colors = [cm(i) for i in np.linspace(0,1,NUM_COLORS)]
color_dict=dict(zip(list(jval.keys()), colors))
for key in jval:
    x = jval[key][0]
    y = jval[key][1]
    plt.scatter(x,y,color=color_dict[key],label=key)
    
#plt.legend(list(jval.keys()), loc='center left', bbox_to_anchor=(1, 0.5))
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.xlabel('Days')
plt.ylabel('Jaccard Simmilarity')
plt.title('Community Evolution-MST')
plt.show()

png

5.7 Visuvalize the network and the evolution

We then merged the graphs from different windows into one graph assigned and exported the output to gexf format to visuvalise the dynamic evolution of the network.Since the networkx gexf export doesn't support dynamic attributes we uses XML parsing to convert the GEXF file to include the dynamic attributes and visuvalised the network and its dynamic evolution in Gephi

The video is available here

https://www.youtube.com/watch?v=KGpEs97YWJ4

# Constructing a graph
import networkx as nx
M=nx.MultiGraph()
for y in G_dict.keys():
    M.add_nodes_from(G_dict[y].nodes(data=True))
    M.add_edges_from(G_dict[y].edges(data=True))
nx.write_gexf(M,'data/price-sp500.gexf')
import xml.etree.ElementTree as ET
tree = ET.parse('data/price-sp500.gexf')
root = tree.getroot()
for element in root.iter("{http://www.gexf.net/1.1draft}node"):
    #print (element.attrib)
    noden = element.attrib['id']
    for child in element:
        for i in range(len(child)):
            child.remove(child[0])
        for y in G_dict.keys():
            T = G_dict[y]
            n = 0
            try:
                for att in T.node[noden]:
                    new = ET.Element("{http://www.gexf.net/1.1draft}attvalue")
                    new.set('for',str(n))
                    new.set('value',str(T.node[noden][att]))
                    new.set('start',str(y))
                    new.set('end',str(y+W-1))
                    child.append(new)
                    #print (T.node[noden][att])
                    n = n + 1
            except:
                continue
for element in root.iter("{http://www.gexf.net/1.1draft}edge"):
    #print (element.attrib)
    noden = element.attrib['id']
    for child in element:
        for i in range(len(child)):
            child[i].set('start',str(element.attrib['start']))
            child[i].set('end',str(element.attrib['end']))
tree.write('data/price-sp500-o.gexf')
# Constructing a graph
import networkx as nx
M=nx.MultiGraph()
for y in GMST_dict.keys():
    M.add_nodes_from(GMST_dict[y].nodes(data=True))
    M.add_edges_from(GMST_dict[y].edges(data=True))
nx.write_gexf(M,'data/price-MST-sp500.gexf')
import xml.etree.ElementTree as ET
tree = ET.parse('data/price-MST-sp500.gexf')
root = tree.getroot()
for element in root.iter("{http://www.gexf.net/1.1draft}node"):
    #print (element.attrib)
    noden = element.attrib['id']
    for child in element:
        for i in range(len(child)):
            child.remove(child[0])
        for y in GMST_dict.keys():
            T = GMST_dict[y]
            n = 0
            try:
                for att in T.node[noden]:
                    new = ET.Element("{http://www.gexf.net/1.1draft}attvalue")
                    new.set('for',str(n))
                    new.set('value',str(T.node[noden][att]))
                    new.set('start',str(y))
                    new.set('end',str(y+W-1))
                    child.append(new)
                    #print (T.node[noden][att])
                    n = n + 1
            except:
                continue
for element in root.iter("{http://www.gexf.net/1.1draft}edge"):
    #print (element.attrib)
    noden = element.attrib['id']
    for child in element:
        for i in range(len(child)):
            child[i].set('start',str(element.attrib['start']))
            child[i].set('end',str(element.attrib['end']))
tree.write('data/price-MST-sp500-o.gexf')

Conclusion

In conclusion we have been able to find answers to our questions and find some interesting results on the dynamics of the Equities in the S and P 500 index through Network Analysis.

We have been able to

1. Build networks for the various phases of the stock market between 2007 and 2017 split based on time periods,  for the stocks in the S and P 500 based  on the Winner Take All and the Minimum Spanning tree Method
2. Analyse the network and found that the network indeed exhibits scale free properties
3. Detect communities in these networks and compare these communities with the communities of the stocks based on the SIC code using Jaccard Similarity.
4. Study the evolution of these communities and noted the essential result that there are some sectors which essentially trade together as a group and some that don't.
5. Leverage the properties of the network to find the important stocks and the sectors which reflect movement of other stocks in the network
6. Identify stocks/sectors which based on their Betweeness cetrality are ideally placed to predict the movement of the prices in the market
7. Visuvalize the dynamic evolution of network by building dynamic graphs  using Gephi

The Analysis and the results provide a interesting insight into the stock market and its dynamic nature.The results from this study and further research can be used in areas of Portfolio optimisation, Risk Mitigation etc.Further analysis can also be done by building networks between different asset classes such as currency , commodities and studying their evolution and behavior over time.

Appendix

MST-Network - Period Starting 1702

from IPython.display import Image
Image(filename='data/MST-Period-1702.png') 

png

Winner Take All -Network - Period Starting 1702

from IPython.display import Image
Image(filename='data/WTA-period-1702.png') 

png

Winner Take All -Network - Period Starting 568

from IPython.display import Image
Image(filename='data/WTA-period-568.png') 

png



Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].