All Projects → numap-library → numap

numap-library / numap

Licence: other
No description or website provided.

Programming Languages

c
50402 projects - #5 most used programming language
CMake
9771 projects

Projects that are alternatives of or similar to numap

numamma
NumaMMA is a lightweight memory profiler for parallel applications
Stars: ✭ 20 (+11.11%)
Mutual labels:  profile, memory, numa, pebs
Sympact
🔥 Stupid Simple CPU/MEM "Profiler" for your JS code.
Stars: ✭ 439 (+2338.89%)
Mutual labels:  profile, memory
Detoxinstruments
Detox Instruments is a performance–analysis and testing framework, designed to help developers profile their mobile apps in order to better understand and optimize their app's behavior and performance.
Stars: ✭ 513 (+2750%)
Mutual labels:  profile, memory
Profile-Card
Profile Card
Stars: ✭ 13 (-27.78%)
Mutual labels:  profile
WAProfileImage
WAProfileImage - A library for Android for choosing and editing profile image like WhatsApp
Stars: ✭ 29 (+61.11%)
Mutual labels:  profile
Mindula-Dilthushan
I am Mindula Dilthushan Manamperi 😋
Stars: ✭ 23 (+27.78%)
Mutual labels:  profile
gctoolkit
Tool for parsing GC logs
Stars: ✭ 1,127 (+6161.11%)
Mutual labels:  memory
rmem
MTuner SDK - Memory profiling library
Stars: ✭ 25 (+38.89%)
Mutual labels:  memory
Spiderpig86
💎 Me. This is a self-updating README. Star it if you like it :)
Stars: ✭ 40 (+122.22%)
Mutual labels:  profile
react-login-registration
An example React / Redux / Redux Saga application talking to a Symfony 3 API
Stars: ✭ 31 (+72.22%)
Mutual labels:  profile
SPTM
[ICLR 2018] Tensorflow/Keras code for Semi-parametric Topological Memory for Navigation
Stars: ✭ 94 (+422.22%)
Mutual labels:  memory
stress
Single-purpose tools to stress resources
Stars: ✭ 24 (+33.33%)
Mutual labels:  memory
github-readme-streak-stats
🔥 Stay motivated and show off your contribution streak! 🌟 Display your total contributions, current streak, and longest streak on your GitHub profile README
Stars: ✭ 1,395 (+7650%)
Mutual labels:  profile
profile-readme
🗣 Display profile activity and other cool widgets in your profile README.md
Stars: ✭ 49 (+172.22%)
Mutual labels:  profile
FireflySoft.RateLimit
It is a rate limiting library based on .Net standard.
Stars: ✭ 76 (+322.22%)
Mutual labels:  memory
github-profile-views-counter
Github new features README profile views counter made with Yii2 framework.
Stars: ✭ 158 (+777.78%)
Mutual labels:  profile
audria
audria - A Utility for Detailed Ressource Inspection of Applications
Stars: ✭ 35 (+94.44%)
Mutual labels:  memory
hashtag.io
Hashtag.io is a PHP based social networking website, which supports exclusive multimedia content, sharing and private or group messaging service.
Stars: ✭ 64 (+255.56%)
Mutual labels:  profile
AkashSingh3031
Akash Singh Portfolio
Stars: ✭ 19 (+5.56%)
Mutual labels:  profile
AppListManager
📱 AppListManager (Android Library) makes managing application and activity lists easy.
Stars: ✭ 59 (+227.78%)
Mutual labels:  memory

Overview

numap is a Linux library dedicated to memory profiling based on hardware performance monitoring unit (PMU). The main objective for the library is to provide high level abstraction for:

  • Cores load requests sampling
  • Cores store requests sampling

Supported processors

Intel processors with family_model information (decimal notation)

  • Nehalem (06_26, 06_30, 06_31, 06_46)
  • Sandy Bridge (06_42, 06_45)
  • Westmere (06_37, 06_44, 06_44)
  • Ivy Bridge (06_58, 06_62)
  • Haswell (06_60, 06_63, 06_69, 06_70)
  • Broadwell (06_61, 06_71, 06_79, 06_86)
  • Kaby Lake (06_142, 06_158)
  • Sky Lake (06_94, 06_78)
  • Cannon Lake (06-102)
  • Ice Lake (06_126)

Not implemented Intel processors:

  • Knights Ferry (11_00)
  • Knights Corner (11_01)
  • Knights Mill (06_133)
  • Knights Landing (06_87)

AMD processors

  • On going development

Folders Organization

  • examples: contains some examples showing how to use numap.

  • include: contains numap headers

  • src: contains numap implementation files

  • Makefile: is a Makefile building both the library and the examples

Dependencies

  • libpfm4
  • libnuma

Howto: extend numap in ordre to take your processor model into account.

Intro

The goal is to tell numap which read/write events to use on a specific architecture. The get_archi function specifies for each architecture which events to use:

switch(archi_id) {
/* ... */
  case CPU_MODEL(6, 158):
  case CPU_MODEL(6, 142):
    snprintf(arch->name, 256, "Kaby Lake micro arch");
    snprintf(arch->sampling_read_event, 256, "MEM_TRANS_RETIRED:LOAD_LATENCY:ldlat=3");
    snprintf(arch->sampling_write_event, 256, "MEM_INST_RETIRED:ALL_STORES");
    break;

You can add a new architecture by adding a new case.

Getting the correct info

On the machine considered, type

less /proc/cpuinfo

This file contains info in the following form:

processor       : 0
vendor_id       : GenuineIntel
cpu family      : 6
model           : 45
model name      : Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz
stepping        : 7
microcode       : 0x710
cpu MHz         : 1339.121
cache size      : 15360 KB
physical id     : 0
siblings        : 12
core id         : 0
cpu cores       : 6
apicid          : 0
initial apicid  : 0
fpu             : yes
fpu_exception   : yes
cpuid level     : 13
wp              : yes
flags           : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer aes xsave avx lahf_lm ida arat epb xsaveopt pln pts dtherm tpr_shadow vnmi flexpriority ept vpid
bogomips        : 4599.76
clflush size    : 64
cache_alignment : 64
address sizes   : 46 bits physical, 48 bits virtual
power management:

Amongst this info, you are interested in the lines "cpu family" and "model". Using them, you can add a new case:

case CPU_MODEL(cpu_family, model):

In our case, we get

case CPU_MODEL(06, 45):

In the Intel documentations, this will be noted as 06_2DH (H for ... hexa)

Now, open the Intel documentation called "64, IA, 32 Architectures Software Developer Manual", and search for the string FAMILY_MODEL (in our example 06_2D). This brings you, among others into a section of chapter 19. Chapter 19 is called Performance Monitoring Events. In our case, we find that 06_2DH is described in section 19.6 PERFORMANCE MONITORING EVENTS FOR 2ND GENERATION INTEL® CORETM I7-2XXX, INTEL® CORETM I5-2XXX, INTEL® CORETM I3-2XXX PROCESSOR SERIES

In the table provided in this section, find the lines corresponding to the requried info. In particular, in this example, we fill in the values for sampling_read_event and sampling_write_event. We leave out thos for counting_read_event and counting_write_event

.sampling_read_event

For the sampling of memory reads, you need something like:

| CDH | 01H | MEM_TRANS_RETIRED.LOAD_LATENCY  | Randomly sampled loads whose latency is above a user defined threshold. A small fraction of the overall loads are sampled due to randomization. PMC3 only. | Specify threshold in MSR 3F6H. |

.sampling_write_event

| CDH | 02H | MEM_TRANS_RETIRED.PRECISE_STORE  | Sample stores and collect precise store operation via PEBS record. PMC3 only. | See Section 18.9.4.3. |

Filling up numap's struct archi for your machine

On some architectures, the info provided in the general documentation is INCORRECT. To get the correct naming of the sampling_read_event, one can use the examples/showevtinfo program provided by numap. This program prints the list of available events.

For our example architecture, we find that the exact latency-fixing parameter is called LATENCY_ABOVE_THRESHOLD instead of LOAD_LATENCY. So be it!

Thus, we modify get_archi to add these lines:

  case CPU_MODEL(6, 45):
    snprintf(arch->name, 256, "Sandy Bridge micro arch");
    snprintf(arch->sampling_read_event, 256, "MEM_TRANS_RETIRED:LATENCY_ABOVE_THRESHOLD:ldlat=3");
    snprintf(arch->sampling_write_event, 256, "MEM_TRANS_RETIRED:PRECISE_STORE");
    break;

Testing

When this is done go to numap's root directory, type

$ cmake
$ make

Then try the example binary in examples:

$ examples/example

This program should output something looking like:

root@taurus-8 ~/numap:-)examples/example

Starting memory read sampling
Memory read sampling results

head = 192200 compared to max = 266240
Thread 0: 4805     samples
Thread 0: 4805     local cache 1                  100.000%
Thread 0: 0        local cache 2                  0.000%
Thread 0: 0        local cache 3                  0.000%
Thread 0: 0        local cache LFB                0.000%
Thread 0: 0        local memory                   0.000%
Thread 0: 0        remote cache or local memory   0.000%
Thread 0: 0        remote memory                  0.000%
Thread 0: 0        unknown l3 miss                0.000%

head = 193240 compared to max = 266240
Thread 1: 4831     samples
Thread 1: 4831     local cache 1                  100.000%
Thread 1: 0        local cache 2                  0.000%
Thread 1: 0        local cache 3                  0.000%
Thread 1: 0        local cache LFB                0.000%
Thread 1: 0        local memory                   0.000%
Thread 1: 0        remote cache or local memory   0.000%
Thread 1: 0        remote memory                  0.000%
Thread 1: 0        unknown l3 miss                0.000%

Starting memory write sampling
Memory write sampling results

head = 262112 compared to max = 266240
Thread 0: 6452     samples
Thread 0: 6442     local cache 1                  99.845%
Thread 0: 0        local cache 2                  0.000%
Thread 0: 0        local cache 3                  0.000%
Thread 0: 0        local cache LFB                0.000%
Thread 0: 0        local memory                   0.000%
Thread 0: 0        remote cache or local memory   0.000%
Thread 0: 0        remote memory                  0.000%
Thread 0: 0        unknown l3 miss                0.000%

head = 262136 compared to max = 266240
Thread 1: 6451     samples
Thread 1: 6436     local cache 1                  99.767%
Thread 1: 0        local cache 2                  0.000%
Thread 1: 0        local cache 3                  0.000%
Thread 1: 0        local cache LFB                0.000%
Thread 1: 0        local memory                   0.000%
Thread 1: 0        remote cache or local memory   0.000%
Thread 1: 0        remote memory                  0.000%
Thread 1: 0        unknown l3 miss                0.000%

Congrats, numap is set up for your machine!

Don't forget to push your modifications to github of course :)

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].