All Projects → Atcold → Pytorch Ppuu

Atcold / Pytorch Ppuu

Licence: mit
Code for Prediction and Planning Under Uncertainty (PPUU)

Projects that are alternatives of or similar to Pytorch Ppuu

Symbiflow Arch Defs
FOSS architecture definitions of FPGA hardware useful for doing PnR device generation.
Stars: ✭ 137 (-1.44%)
Mutual labels:  jupyter-notebook
Imageaugmentation
Image augmentation for randomly rotating, shearing, translating and changing lighting conditions.
Stars: ✭ 138 (-0.72%)
Mutual labels:  jupyter-notebook
Tensorflow In Practice Specialization
Tensorflow-in-Practice-Specialization
Stars: ✭ 139 (+0%)
Mutual labels:  jupyter-notebook
Nndl Codes
Sample Codes for NNDL
Stars: ✭ 138 (-0.72%)
Mutual labels:  jupyter-notebook
Openff Toolkit
The Open Forcefield Toolkit provides implementations of the SMIRNOFF format, parameterization engine, and other tools. Documentation available at http://open-forcefield-toolkit.readthedocs.io
Stars: ✭ 138 (-0.72%)
Mutual labels:  jupyter-notebook
Ipython Quick Ref Sheets
This is ongoing work developing quick reference sheets for IPython
Stars: ✭ 138 (-0.72%)
Mutual labels:  jupyter-notebook
Generative adversarial networks 101
Keras implementations of Generative Adversarial Networks. GANs, DCGAN, CGAN, CCGAN, WGAN and LSGAN models with MNIST and CIFAR-10 datasets.
Stars: ✭ 138 (-0.72%)
Mutual labels:  jupyter-notebook
Image classifier
CNN image classifier implemented in Keras Notebook 🖼️.
Stars: ✭ 139 (+0%)
Mutual labels:  jupyter-notebook
Recommender live
Stars: ✭ 138 (-0.72%)
Mutual labels:  jupyter-notebook
Best Deep Learning Optimizers
Collection of the latest, greatest, deep learning optimizers (for Pytorch) - CNN, NLP suitable
Stars: ✭ 139 (+0%)
Mutual labels:  jupyter-notebook
Gossiping Chinese Corpus
PTT 八卦版問答中文語料
Stars: ✭ 137 (-1.44%)
Mutual labels:  jupyter-notebook
Ethnicolr
Predict Race and Ethnicity Based on the Sequence of Characters in a Name
Stars: ✭ 137 (-1.44%)
Mutual labels:  jupyter-notebook
99 Ml Learning Projects
A list of 99 machine learning projects for anyone interested to learn from coding and building projects
Stars: ✭ 139 (+0%)
Mutual labels:  jupyter-notebook
Fm tensorflow
Factorization Machines implementation with Tensorflow
Stars: ✭ 138 (-0.72%)
Mutual labels:  jupyter-notebook
Python Engineer Notebooks
Stars: ✭ 139 (+0%)
Mutual labels:  jupyter-notebook
Automate The Boring Stuff With Python Solutions
Solutions for Automate the Boring Stuff with Python
Stars: ✭ 136 (-2.16%)
Mutual labels:  jupyter-notebook
Ipytracer
📊 Algorithm Visualizer for IPython/Jupyter Notebook
Stars: ✭ 138 (-0.72%)
Mutual labels:  jupyter-notebook
Usiigaci
Usiigaci: stain-free cell tracking in phase contrast microscopy enabled by supervised machine learning
Stars: ✭ 139 (+0%)
Mutual labels:  jupyter-notebook
Multi Task Refinenet
Multi-Task (Joint Segmentation / Depth / Surface Normas) Real-Time Light-Weight RefineNet
Stars: ✭ 139 (+0%)
Mutual labels:  jupyter-notebook
Hadith Data Sets
All Hadith With Tashkil and Without Tashkel from the Nine Books that are 62,169 Hadith.
Stars: ✭ 139 (+0%)
Mutual labels:  jupyter-notebook

Prediction and Policy-learning Under Uncertainty (PPUU)

Gitter chatroom, video summary, slides, poster, website.
Implementing Model-Predictive Policy Learning with Uncertainty Regularization for Driving in Dense Traffic in PyTorch.

planning

The objective is to train an agent (pink brain drawing) who's going to plan its own trajectory in a densely (stochastic) traffic highway. To do so, it minimises a few costs over trajectories unrolled while interacting with a world model (blue world drawing). We need to start, then, by training the world model with observational data from the real world (Earth's photo), which needs to be downloaded from the Internet.

Getting the real data

To get started, you need to fetch the real world data. Go to this address, and download the TGZ file (330 MB) on your machine. Open a terminal, go to the location where you've downloaded the file, and type:

tar xf xy-trajectories.tgz

This will expand the NGSIM (Next Generation Simulation) data set compressed archive, consisting of all cars trajectories for the 4 available maps (now 1.6 GB). Its content is the following:

xy-trajectories
├── i80
│   ├── trajectories-0400-0415.txt
│   ├── trajectories-0500-0515.txt
│   ├── trajectories-0515-0530.txt
│   └── trajectory-data-dictionary.htm
├── lanker
│   ├── trajectories-0830am-0845am.txt
│   ├── trajectories-0845am-0900am.txt
│   └── trajectory-data-dictionary.htm
├── peach
│   ├── trajectories-0400pm-0415pm.txt
│   ├── trajectories-1245pm-0100pm.txt
│   └── trajectory-data-dictionary.htm
└── us101
    ├── trajectories-0750am-0805am.txt
    ├── trajectories-0805am-0820am.txt
    ├── trajectories-0820am-0835am.txt
    └── trajectory-data-dictionary.htm

4 directories, 14 files

Finally, move the xy-trajectories directory inside a folder named traffic-data.

Setting up the environment

In this section we will fetch the repo, install the dependencies, and view the data we just downloaded, so that we can see if everything runs fine. So, open up your terminal, and type:

git clone [email protected]:Atcold/pytorch-PPUU.git
# or with the https protocol
# git clone https://github.com/Atcold/pytorch-PPUU

Now move (or symlink) the traffic-data folder inside the repo:

cd pytorch-PPUU
mv <traffic-data_folder_path> .
# or
# ln -s <traffic-data_folder_path>

Now install the PPUU environment (this expects you have conda on your system, go here if this is not the case):

conda env create -f environment.yaml
#
# To activate this environment, use:
# > source activate PPUU
#
# To deactivate an active environment, use:
# > source deactivate
#

As prescribed, activate it by typing:

source activate PPUU  # or
conda activate PPUU

Finally, have a look at the four maps available in the NGSIM data set, namely: I-80, US-101, Lankershim, and Peachtree. There is a "bonus" map, called AI, where I've hard coded a policy for the vehicles, which are using a PID controller. Type the following command:

python play_maps.py -map <map>
# where <map> can be one of {i80,us101,peach,lanker,ai}
# add -h to see the full list of options available

The frame rate should be greater than 20 Hz. Often it will be larger than 60 Hz. To be noted, here the vehicles are performing the actions extracted from the trajectories, and not simply following the original spatial coordinates.

Dumping the "state, action, cost" triple

In order to train both the world and agent models, we need to create the observations, starting from the NGSIM trajectories and the simulator. This can be done with the following command:

for t in 0 1 2; do python generate_trajectories.py -map i80 -time_slot $t; done
# to dump the triple for the i80 map, otherwise replace i80 with the map you want

Upon the script termination, we will find a folder named state-action-cost within our traffic-data. The content of the latter is now the following:

traffic-data/
├── state-action-cost
│   └── data_i80_v0
│       ├── trajectories-0400-0415
│       │   ├── car1.pkl
│       │   └── ...
│       ├── trajectories-0500-0515
│       │   └── ...
│       └── trajectories-0515-0530
│           └── ...
└── xy-trajectories
    └── ...

Additional info

Each pickled vehicle observation is stored as car{idx}.pkl. Its content is a dict which includes the items and corresponding sizes (shapes):

images               (309, 3, 117, 24)
actions              (309, 2)
lane_cost            (309,)
pixel_proximity_cost (309,)
states               (309, 7, 4)
frames               (309,)

For example, this vehicle was alive for 309 frames (time steps). The images represent the occupancy grid, which is as large as 4 lanes width (24 pixels, here).

  • The R channel represents the lane markings.
  • The G channel encodes the position and shape of the neighbouring vehicles.
  • The B channel depits our own vehicle.

The actions is a collection of 2D vectors, encoding the positive and negative acceleration in both x and y directions. The lane_cost and pixel_proximity_cost are the task specific costs (see slides for details). The states encode position and velocity of the current vehicle and the most closest 6 ones: left/current/right lanes, front/back. Finally, frames tells us the snapshot time stamp, so that we can go back to the simulator, and inspect strange situations present in the observations.

Finally (this will likely be automated soon, and made avaiable for every map), extract the car sizes for the I-80 map with:

python extract_car_size.py

Training the world model

As we have stated above, we need to start by learning how the real world evolve. To do so, we train a neural net, which tries to predict what happens next, given that we start in a given state, and a specific action is performed. More precisely, we are going to train an action conditional variational predictive net, which resembles much a variational autoencoder (VAE) that has three inputs (concatenated sequence of states, images, action) and its output is set to be the next item in the sequence (states, images).

In the code, the world model is shortened as fm, which stands for forward dynamics model. So, let's train the forward dynamics model (fm) on the observational dataset. This can be done by running:

python train_fm.py -model_dir <fm_save_path>

Training the cost model

Along with the dynamics model, we have a separate model to predict the costs of state and action pairs, which can be trained by running:

 python train_cost.py

Training the agent

agent training

uncertainty computation

Once the dynamics model is trained, it can be used to train the policy network, using MPUR, MPER, or IL. These corresponds to:

  • MPUR: Model-based Policy learning with Uncertainty Regularisation (shown in the figure above)
  • MPER: Model-based Policy learning with Expert Regularisation (model-based IL)
  • IL: Imitation Learning (copying the expert actions given the past observations)

This is done by running:

python train_{MPUR,MPER,IL}.py -model_dir <fm_load_path> -mfile <fm_filename>

Evaluating the agent

To evaluate a trained policy, run the script eval_policy.py in one of the three following modes. Type -h to see other options and details.

python eval_policy.py -model_dir <load_path> -policy_model <policy_filename> -method policy-{MPUR,MPER,IL}

You can also specify -method bprop to perform "brute force" planning, which will be computationally expensive.

Parallel evaluation

Evaluation happens in parallel. By default, evaluator script uses min(10, #cores_available) processes. It doesn't go above 10 because then it hits GPU memory limits. To change the number of processes, you can pass -num-processes argument to eval_policy.py script. Also, for this to work, you need to request cpu cores using --cpus-per-task=X argument for slurm. The slurm limits cpu usage to 64 cores per user, and gpus to 18 per user, therefore 3 is a reasonable limit to enable us to use all the gpus without hitting the gpu limit when running multiple evaluations. The CPU limit can be extended, but you need to email the IT helpdesk.

Pre-trained models

Here you can download the predictive model and the policy we've trained on our servers (they are bundled together in the model field of this Python dictionary). The agent achieves 82.0% of success rate.
Here, instead, you can download only the predictive models (one for the state and one for the cost), and try to train the policy by your own.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].