All Projects → containerd → Stargz Snapshotter

containerd / Stargz Snapshotter

Licence: apache-2.0
Fast docker image distribution plugin for containerd, based on CRFS/stargz

Programming Languages

go
31211 projects - #10 most used programming language

Projects that are alternatives of or similar to Stargz Snapshotter

Minideb
A small image based on Debian designed for use in containers
Stars: ✭ 1,561 (+493.54%)
Mutual labels:  containers, docker-image
Kubler
A generic, extendable build orchestrator.
Stars: ✭ 126 (-52.09%)
Mutual labels:  containers, docker-image
Bitnami Docker Node
Bitnami Node.js Docker Image
Stars: ✭ 111 (-57.79%)
Mutual labels:  containers, docker-image
Bitnami Docker Ghost
Bitnami Docker Image for Ghost
Stars: ✭ 76 (-71.1%)
Mutual labels:  containers, docker-image
Bitnami Docker Nginx
Bitnami nginx Docker Image
Stars: ✭ 198 (-24.71%)
Mutual labels:  containers, docker-image
Bitnami Docker Airflow
Bitnami Docker Image for Apache Airflow
Stars: ✭ 89 (-66.16%)
Mutual labels:  containers, docker-image
Bitnami Docker Rabbitmq
Bitnami Docker Image for RabbitMQ
Stars: ✭ 120 (-54.37%)
Mutual labels:  containers, docker-image
Bitnami Docker Parse
Stars: ✭ 56 (-78.71%)
Mutual labels:  containers, docker-image
Bitnami Docker Moodle
Bitnami Docker Image for Moodle
Stars: ✭ 188 (-28.52%)
Mutual labels:  containers, docker-image
Bitnami Docker Redmine
Bitnami Docker Image for Redmine
Stars: ✭ 172 (-34.6%)
Mutual labels:  containers, docker-image
Anchore Engine
A service that analyzes docker images and applies user-defined acceptance policies to allow automated container image validation and certification
Stars: ✭ 1,192 (+353.23%)
Mutual labels:  containers, docker-image
Box
A mruby-based Builder for Docker Images
Stars: ✭ 236 (-10.27%)
Mutual labels:  containers, docker-image
Alpine Erlang
An alpine image with Erlang installed, intended for releases
Stars: ✭ 73 (-72.24%)
Mutual labels:  containers, docker-image
Bitnami Docker Testlink
Bitnami Docker Image for TestLink
Stars: ✭ 95 (-63.88%)
Mutual labels:  containers, docker-image
Bitnami Docker Express
Bitnami Express Docker Compose development environment
Stars: ✭ 63 (-76.05%)
Mutual labels:  containers, docker-image
Bitnami Docker Mysql
Bitnami MySQL Docker Image
Stars: ✭ 116 (-55.89%)
Mutual labels:  containers, docker-image
Docker Redmine
Docker Image for Redmine
Stars: ✭ 1,044 (+296.96%)
Mutual labels:  containers, docker-image
Bitnami Docker Tensorflow Serving
Bitnami Docker Image for TensorFlow Serving
Stars: ✭ 49 (-81.37%)
Mutual labels:  containers, docker-image
Bitnami Docker Magento
Bitnami Docker Image for Magento
Stars: ✭ 159 (-39.54%)
Mutual labels:  containers, docker-image
Bitnami Docker Php Fpm
Bitnami PHP-FPM Docker Image
Stars: ✭ 210 (-20.15%)
Mutual labels:  containers, docker-image

Stargz Snapshotter

Tests Status Benchmarking Nightly

Read also introductory blog: Startup Containers in Lightning Speed with Lazy Image Distribution on Containerd

Pulling image is one of the time-consuming steps in the container lifecycle. Research shows that time to take for pull operation accounts for 76% of container startup time[FAST '16]. Stargz Snapshotter is an implementation of snapshotter which aims to solve this problem by lazy pulling. Lazy pulling here means a container can run without waiting for the pull completion of the image and necessary chunks of the image are fetched on-demand.

eStargz is a lazily-pullable image format proposed by this project. This is compatible to OCI/Docker images so this can be pushed to standard container registries (e.g. ghcr.io) as well as this is still runnable even on eStargz-agnostic runtimes including Docker. eStargz format is based on stargz image format by CRFS but comes with additional features like runtime optimization and content verification.

The following histogram is the benchmarking result for startup time of several containers measured on Github Actions, using GitHub Container Registry.

The benchmarking result on ecdb227

legacy shows the startup performance when we use containerd's default snapshotter (overlayfs) with images copied from docker.io/library without optimization. For this configuration, containerd pulls entire image contents and pull operation takes accordingly. When we use stargz snapshotter with eStargz-converted images but without any optimization (estargz-noopt) we are seeing performance improvement on the pull operation because containerd can start the container without waiting for the pull completion and fetch necessary chunks of the image on-demand. But at the same time, we see the performance drawback for run operation because each access to files takes extra time for fetching them from the registry. When we use eStargz with optimization (estargz), we can mitigate the performance drawback observed in estargz-noopt images. This is because stargz snapshotter prefetches and caches likely accessed files during running the container. On the first container creation, stargz snapshotter waits for the prefetch completion so create sometimes takes longer than other types of image. But it's still shorter than waiting for downloading all files of all layers.

The above histogram is the benchmarking result on the commit ecdb227. We are constantly measuring the performance of this snapshotter so you can get the latest one through the badge shown top of this doc. Please note that we sometimes see dispersion among the results because of the NW condition on the internet and the location of the instance in the Github Actions, etc. Our benchmarking method is based on HelloBench.

Stargz Snapshotter is a non-core sub-project of containerd.

Quick Start with Kubernetes

For using stargz snapshotter on kubernetes nodes, you need the following configuration to containerd as well as run stargz snapshotter daemon on the node. We assume that you are using containerd (> v1.4.2) as a CRI runtime.

version = 2

# Plug stargz snapshotter into containerd
# Containerd recognizes stargz snapshotter through specified socket address.
# The specified address below is the default which stargz snapshotter listen to.
[proxy_plugins]
  [proxy_plugins.stargz]
    type = "snapshot"
    address = "/run/containerd-stargz-grpc/containerd-stargz-grpc.sock"

# Use stargz snapshotter through CRI
[plugins."io.containerd.grpc.v1.cri".containerd]
  snapshotter = "stargz"
  disable_snapshot_annotations = false

Note that disable_snapshot_annotations = false is required since containerd > v1.4.2

This repo contains a Dockerfile as a KinD node image which includes the above configuration. You can use it with KinD like the following,

$ docker build -t stargz-kind-node https://github.com/containerd/stargz-snapshotter.git
$ kind create cluster --name stargz-demo --image stargz-kind-node

Then you can create eStargz pods on the cluster. In this example, we create a stargz-converted Node.js pod (ghcr.io/stargz-containers/node:13.13.0-esgz) as a demo.

apiVersion: v1
kind: Pod
metadata:
  name: nodejs
spec:
  containers:
  - name: nodejs-stargz
    image: ghcr.io/stargz-containers/node:13.13.0-esgz
    command: ["node"]
    args:
    - -e
    - var http = require('http');
      http.createServer(function(req, res) {
        res.writeHead(200);
        res.end('Hello World!\n');
      }).listen(80);
    ports:
    - containerPort: 80

The following command lazily pulls ghcr.io/stargz-containers/node:13.13.0-esgz from Github Container Registry and creates the pod so the time to take for it is shorter than the original image library/node:13.13.

$ kubectl --context kind-stargz-demo apply -f stargz-pod.yaml && kubectl get po nodejs -w
$ kubectl --context kind-stargz-demo port-forward nodejs 8080:80 &
$ curl 127.0.0.1:8080
Hello World!

Stargz snapshotter also supports further configuration including private registry authentication, mirror registries, etc.

Creating eStargz images with optimization

For lazy pulling images, you need to prepare eStargz images first. You can use ctr-remote command for do this. You can also try our pre-converted images listed in Trying pre-converted images.

In this section, we introduce ctr-remote command for converting images into eStargz with optimization for reading files. As shown in the above benchmarking result, on-demand lazy pulling improves the performance of pull but causes runtime performance penalty because reading files induce remotely downloading contents. For solving this, ctr-remote has workload-based optimization for images.

For trying the examples described in this section, you can also use the docker-compose-based demo environment. You can setup this environment as the following commands (put this repo on ${GOPATH}/src/github.com/containerd/stargz-snapshotter). Note that this runs privileged containers on your host.

$ cd ${GOPATH}/src/github.com/containerd/stargz-snapshotter/script/demo
$ docker-compose build containerd_demo
$ docker-compose up -d
$ docker exec -it containerd_demo /bin/bash
(inside container) # ./script/demo/run.sh

Generally, container images are built with purpose and the workloads are defined in the Dockerfile with some parameters (e.g. entrypoint, envvars and user). By default, ctr-remote optimizes the performance of reading files that are most likely accessed in the workload defined in the Dockerfile. You can also specify the custom workload using options if needed.

The following example converts the legacy library/ubuntu:18.04 image into eStargz. The command also optimizes the image for the workload of executing ls on /bin/bash. The thing actually done is it runs the specified workload in a temporary container and profiles all file accesses with marking them as likely accessed also during runtime. The converted image is still docker-compatible so you can run it with eStargz-agnostic runtimes (e.g. Docker).

# ctr-remote image pull docker.io/library/ubuntu:18.04
# ctr-remote image optimize --entrypoint='[ "/bin/bash", "-c" ]' --args='[ "ls" ]' docker.io/library/ubuntu:18.04 registry2:5000/ubuntu:18.04
# ctr-remote image push --plain-http registry2:5000/ubuntu:18.04

Finally, the following commands clear the local cache then pull the eStargz image lazily. Stargz snapshotter prefetches files that are most likely accessed in the optimized workload, which hopefully increases the cache hit rate for that workload and mitigates runtime overheads as shown in the benchmarking result shown top of this doc.

# ctr-remote image rm --sync registry2:5000/ubuntu:18.04
# ctr-remote images rpull --plain-http registry2:5000/ubuntu:18.04
fetching sha256:728332a6... application/vnd.docker.distribution.manifest.v2+json
fetching sha256:80026893... application/vnd.docker.container.image.v1+json
# ctr-remote run --rm -t --snapshotter=stargz registry2:5000/ubuntu:18.04 test /bin/bash
ls
bin  boot  dev  etc  home  lib  lib64  media  mnt  opt  proc  root  run  sbin  srv  sys  tmp  usr  var

Importing Stargz Snapshotter as go module

Currently, Stargz Snapshotter repository contains two Go modules as the following and both of them need to be imported.

  • github.com/containerd/stargz-snapshotter
  • github.com/containerd/stargz-snapshotter/estargz

Please make sure you import the both of them and they point to the same commit version.

Project details

Stargz Snapshotter is a containerd non-core sub-project, licensed under the Apache 2.0 license. As a containerd non-core sub-project, you will find the:

information in our containerd/project repository.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].