All Projects → frgfm → Torch Scan

frgfm / Torch Scan

Licence: mit
Useful information about PyTorch modules (FLOPs, MACs, receptive field, etc.)

Programming Languages

python
139335 projects - #7 most used programming language

Projects that are alternatives of or similar to Torch Scan

Easy Deep Learning With Allennlp
🔮Deep Learning for text made easy with AllenNLP
Stars: ✭ 32 (-21.95%)
Mutual labels:  deep-neural-networks
Rtb
Benchmarking tool to stress real-time protocols
Stars: ✭ 35 (-14.63%)
Mutual labels:  benchmark
Knowledge Distillation Pytorch
A PyTorch implementation for exploring deep and shallow knowledge distillation (KD) experiments with flexibility
Stars: ✭ 986 (+2304.88%)
Mutual labels:  deep-neural-networks
Letslearnai.github.io
Lets Learn AI
Stars: ✭ 33 (-19.51%)
Mutual labels:  deep-neural-networks
Skater
Python Library for Model Interpretation/Explanations
Stars: ✭ 973 (+2273.17%)
Mutual labels:  deep-neural-networks
Ardupi Ecg
Full HRV analysis of Arduino pulse sensor, using Python signal processing and time series techniques. Chaotic, Fourier, Wavelet, Regression, Neural Net.
Stars: ✭ 35 (-14.63%)
Mutual labels:  deep-neural-networks
Onnx R
R Interface to Open Neural Network Exchange (ONNX)
Stars: ✭ 31 (-24.39%)
Mutual labels:  deep-neural-networks
Fullstackmachinelearning
Mostly free resources for end-to-end machine learning engineering, including open courses from CalTech, Columbia, Berkeley, MIT, and Stanford (in alphabetical order).
Stars: ✭ 39 (-4.88%)
Mutual labels:  deep-neural-networks
Maestro
An analytical cost model evaluating DNN mappings (dataflows and tiling).
Stars: ✭ 35 (-14.63%)
Mutual labels:  deep-neural-networks
Okutama Action
Okutama-Action: An Aerial View Video Dataset for Concurrent Human Action Detection
Stars: ✭ 36 (-12.2%)
Mutual labels:  benchmark
Dl Colab Notebooks
Try out deep learning models online on Google Colab
Stars: ✭ 969 (+2263.41%)
Mutual labels:  deep-neural-networks
Segmentation Networks Benchmark
Evaluation framework for testing segmentation networks in Keras
Stars: ✭ 34 (-17.07%)
Mutual labels:  benchmark
Constrained attention filter
(ECCV 2020) Tensorflow implementation of A Generic Visualization Approach for Convolutional Neural Networks
Stars: ✭ 36 (-12.2%)
Mutual labels:  deep-neural-networks
Densedepth
High Quality Monocular Depth Estimation via Transfer Learning
Stars: ✭ 963 (+2248.78%)
Mutual labels:  deep-neural-networks
Sockeye
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Stars: ✭ 990 (+2314.63%)
Mutual labels:  deep-neural-networks
Theano Kaldi Rnn
THEANO-KALDI-RNNs is a project implementing various Recurrent Neural Networks (RNNs) for RNN-HMM speech recognition. The Theano Code is coupled with the Kaldi decoder.
Stars: ✭ 31 (-24.39%)
Mutual labels:  deep-neural-networks
Channel Pruning
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)
Stars: ✭ 979 (+2287.8%)
Mutual labels:  deep-neural-networks
Tarsbenchmark
benchmark tool for tars/http service
Stars: ✭ 41 (+0%)
Mutual labels:  benchmark
Dbn Cuda
GPU accelerated Deep Belief Network
Stars: ✭ 38 (-7.32%)
Mutual labels:  deep-neural-networks
Nvidia libs test
Tests and benchmarks for cudnn (and in the future, other nvidia libraries)
Stars: ✭ 36 (-12.2%)
Mutual labels:  benchmark

Torchscan: meaningful module insights

License Codacy Badge Build Status codecov Docs Pypi

The very useful summary method of tf.keras.Model but for PyTorch, with more useful information.

Table of Contents

Getting started

Prerequisites

  • Python 3.6 (or more recent)
  • pip

Installation

You can install the package using pypi as follows:

pip install torchscan

or using conda:

conda install -c frgfm torchscan

Usage

Similarly to the torchsummary implementation, torchscan brings useful module information into readable format. For nested complex architectures, you can use a maximum depth of display as follows:

from torchvision.models import densenet121
from torchscan import summary

model = densenet121().eval().cuda()
summary(model, (3, 224, 224), max_depth=2)

which would yield

__________________________________________________________________________________________
Layer                        Type                  Output Shape              Param #        
==========================================================================================
densenet                     DenseNet              (-1, 1000)                0              
├─features                   Sequential            (-1, 1024, 7, 7)          0              
|    └─conv0                 Conv2d                (-1, 64, 112, 112)        9,408          
|    └─norm0                 BatchNorm2d           (-1, 64, 112, 112)        257            
|    └─relu0                 ReLU                  (-1, 64, 112, 112)        0              
|    └─pool0                 MaxPool2d             (-1, 64, 56, 56)          0              
|    └─denseblock1           _DenseBlock           (-1, 256, 56, 56)         338,316        
|    └─transition1           _Transition           (-1, 128, 28, 28)         33,793         
|    └─denseblock2           _DenseBlock           (-1, 512, 28, 28)         930,072        
|    └─transition2           _Transition           (-1, 256, 14, 14)         133,121        
|    └─denseblock3           _DenseBlock           (-1, 1024, 14, 14)        2,873,904      
|    └─transition3           _Transition           (-1, 512, 7, 7)           528,385        
|    └─denseblock4           _DenseBlock           (-1, 1024, 7, 7)          2,186,272      
|    └─norm5                 BatchNorm2d           (-1, 1024, 7, 7)          4,097          
├─classifier                 Linear                (-1, 1000)                1,025,000      
==========================================================================================
Trainable params: 7,978,856
Non-trainable params: 0
Total params: 7,978,856
------------------------------------------------------------------------------------------
Model size (params + buffers): 30.76 Mb
Framework & CUDA overhead: 423.57 Mb
Total RAM usage: 454.32 Mb
------------------------------------------------------------------------------------------
Floating Point Operations on forward: 5.74 GFLOPs
Multiply-Accumulations on forward: 2.87 GMACs
Direct memory accesses on forward: 2.90 GDMAs
__________________________________________________________________________________________

Results are aggregated to the selected depth for improved readability.

For reference, here are explanations of a few acronyms:

  • FLOPs: floating-point operations (not to be confused with FLOPS which is FLOPs per second)
  • MACs: mutiply-accumulate operations (cf. wikipedia)
  • DMAs: direct memory accesses (many argue that it is more relevant than FLOPs or MACs to compare model inference speeds cf. wikipedia)

Additionally, for highway nets (models without multiple branches / skip connections), torchscan supports receptive field estimation.

from torchvision.models import vgg16
from torchscan import summary

model = vgg16().eval().cuda()
summary(model, (3, 224, 224), receptive_field=True, max_depth=0)

which will add the layer's receptive field (relatively to the last convolutional layer) to the summary.

## Benchmark

Below are the results for classification models supported by torchvision for a single image with 3 color channels of size 224x224 (apart from inception_v3 which uses 299x299).

Model Params (M) FLOPs (G) MACs (G) DMAs (G) RF
alexnet 61.1 1.43 0.71 0.72 195
googlenet 6.62 3.01 1.51 1.53 --
vgg11 132.86 15.23 7.61 7.64 150
vgg11_bn 132.87 15.26 7.63 7.66 150
vgg13 133.05 22.63 11.31 11.35 156
vgg13_bn 133.05 22.68 11.33 11.37 156
vgg16 138.36 30.96 15.47 15.52 212
vgg16_bn 138.37 31.01 15.5 15.55 212
vgg19 143.67 39.28 19.63 19.69 268
vgg19_bn 143.68 39.34 19.66 19.72 268
resnet18 11.69 3.64 1.82 1.84 --
resnet34 21.8 7.34 3.67 3.7 --
resnet50 25.56 8.21 4.11 4.15 --
resnet101 44.55 15.66 7.83 7.9 --
resnet152 60.19 23.1 11.56 11.65 --
inception_v3 27.16 11.45 5.73 5.76 --
squeezenet1_0 1.25 1.64 0.82 0.83 --
squeezenet1_1 1.24 0.7 0.35 0.36 --
wide_resnet50_2 68.88 22.84 11.43 11.51 --
wide_resnet101_2 126.89 45.58 22.8 22.95 --
densenet121 7.98 5.74 2.87 2.9 --
densenet161 28.68 15.59 7.79 7.86 --
densenet169 14.15 6.81 3.4 3.44 --
densenet201 20.01 8.7 4.34 4.39 --
resnext50_32x4d 25.03 8.51 4.26 4.3 --
resnext101_32x8d 88.79 32.93 16.48 16.61 --
mobilenet_v2 3.5 0.63 0.31 0.32 --
shufflenet_v2_x0_5 1.37 0.09 0.04 0.05 --
shufflenet_v2_x1_0 2.28 0.3 0.15 0.15 --
shufflenet_v2_x1_5 3.5 0.6 0.3 0.31 --
shufflenet_v2_x2_0 7.39 1.18 0.59 0.6 --
mnasnet0_5 2.22 0.22 0.11 0.12 --
mnasnet0_75 3.17 0.45 0.23 0.24 --
mnasnet1_0 4.38 0.65 0.33 0.34 --
mnasnet1_3 6.28 1.08 0.54 0.56 --

The above results were produced using the scripts/benchmark.py script.

Note: receptive field computation is currently only valid for highway nets.

Technical roadmap

The project is currently under development, here are the objectives for the next releases:

  • [x] Support of torch.nn.Module layers: ConvTranspose, Identity.

  • [x] Package distribution: add a conda package.

  • [x] Shared parameter support (cf. discussion)

  • [ ] Result exporting: add a csv export option.

  • [ ] Forward pass stat support: RAM usage for each layer, on forward pass.

  • [ ] Backward pass stat support: RAM usage for each layer, on backward pass.

  • [ ] Support of torch.nn.Module layers: GroupNorm, Upsample, PixelShuffle, RNN, LSTM, GRU, Embedding, Transformer.

  • [ ] Support of scripted modules

  • [ ] Support of torch.nn functional API

  • [ ] I/O handling: multiple inputs or outputs, non-tensor I/O

  • [ ] Add computational graph (cf. pytorchviz)

Documentation

The full package documentation is available here for detailed specifications. The documentation was built with Sphinx using a theme provided by Read the Docs.

Contributing

Please refer to CONTRIBUTING if you wish to contribute to this project.

Credits

This project is developed and maintained by the repo owner, but the implementation was inspired or helped by the following contributions:

License

Distributed under the MIT License. See LICENSE for more information.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].