All Projects → EpistasisLab → Tpot

EpistasisLab / Tpot

Licence: lgpl-3.0
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Programming Languages

python
139335 projects - #7 most used programming language
Jupyter Notebook
11667 projects
shell
77523 projects

Projects that are alternatives of or similar to Tpot

Mljar Supervised
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning 🚀
Stars: ✭ 961 (-88.53%)
Mutual labels:  data-science, scikit-learn, automl, xgboost, hyperparameter-optimization, random-forest, feature-engineering, automated-machine-learning
Auto ml
[UNMAINTAINED] Automated machine learning for analytics & production
Stars: ✭ 1,559 (-81.39%)
Mutual labels:  data-science, scikit-learn, automl, xgboost, hyperparameter-optimization, feature-engineering, automated-machine-learning, gradient-boosting
Hyperactive
A hyperparameter optimization and data collection toolbox for convenient and fast prototyping of machine-learning models.
Stars: ✭ 182 (-97.83%)
Mutual labels:  data-science, scikit-learn, xgboost, hyperparameter-optimization, feature-engineering, automated-machine-learning
Hyperparameter hunter
Easy hyperparameter optimization and automatic result saving across machine learning algorithms and libraries
Stars: ✭ 648 (-92.27%)
Mutual labels:  data-science, scikit-learn, xgboost, hyperparameter-optimization, feature-engineering
My Data Competition Experience
本人多次机器学习与大数据竞赛Top5的经验总结,满满的干货,拿好不谢
Stars: ✭ 271 (-96.77%)
Mutual labels:  data-science, automl, xgboost, hyperparameter-optimization, feature-engineering
Lale
Library for Semi-Automated Data Science
Stars: ✭ 198 (-97.64%)
Mutual labels:  data-science, scikit-learn, automl, hyperparameter-optimization, automated-machine-learning
Autogluon
AutoGluon: AutoML for Text, Image, and Tabular Data
Stars: ✭ 3,920 (-53.21%)
Mutual labels:  data-science, scikit-learn, automl, hyperparameter-optimization, automated-machine-learning
Nni
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
Stars: ✭ 10,698 (+27.69%)
Mutual labels:  data-science, automl, hyperparameter-optimization, feature-engineering, automated-machine-learning
Lightautoml
LAMA - automatic model creation framework
Stars: ✭ 196 (-97.66%)
Mutual labels:  data-science, automl, feature-engineering, automated-machine-learning, gradient-boosting
Featuretools
An open source python library for automated feature engineering
Stars: ✭ 5,891 (-29.68%)
Mutual labels:  data-science, scikit-learn, automl, feature-engineering, automated-machine-learning
mindware
An efficient open-source AutoML system for automating machine learning lifecycle, including feature engineering, neural architecture search, and hyper-parameter tuning.
Stars: ✭ 34 (-99.59%)
Mutual labels:  hyperparameter-optimization, feature-engineering, automl, automated-machine-learning
FEDOT
Automated modeling and machine learning framework FEDOT
Stars: ✭ 312 (-96.28%)
Mutual labels:  hyperparameter-optimization, automl, automated-machine-learning, parameter-tuning
Autoviz
Automatically Visualize any dataset, any size with a single line of code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
Stars: ✭ 310 (-96.3%)
Mutual labels:  scikit-learn, automl, xgboost, automated-machine-learning
Autodl
Automated Deep Learning without ANY human intervention. 1'st Solution for AutoDL [email protected]
Stars: ✭ 854 (-89.81%)
Mutual labels:  data-science, automl, feature-engineering, automated-machine-learning
Automl alex
State-of-the art Automated Machine Learning python library for Tabular Data
Stars: ✭ 132 (-98.42%)
Mutual labels:  data-science, automl, xgboost, hyperparameter-optimization
Auptimizer
An automatic ML model optimization tool.
Stars: ✭ 166 (-98.02%)
Mutual labels:  data-science, automl, hyperparameter-optimization, automated-machine-learning
Machinejs
[UNMAINTAINED] Automated machine learning- just give it a data file! Check out the production-ready version of this project at ClimbsRocks/auto_ml
Stars: ✭ 412 (-95.08%)
Mutual labels:  data-science, scikit-learn, automl, automated-machine-learning
handson-ml
도서 "핸즈온 머신러닝"의 예제와 연습문제를 담은 주피터 노트북입니다.
Stars: ✭ 285 (-96.6%)
Mutual labels:  random-forest, scikit-learn, xgboost, gradient-boosting
Igel
a delightful machine learning tool that allows you to train, test, and use models without writing code
Stars: ✭ 2,956 (-64.72%)
Mutual labels:  automation, data-science, scikit-learn, automl
Auto Sklearn
Automated Machine Learning with scikit-learn
Stars: ✭ 5,916 (-29.39%)
Mutual labels:  scikit-learn, automl, hyperparameter-optimization, automated-machine-learning

Master status: Master Build Status - Mac/Linux Master Build Status - Windows Master Coverage Status

Development status: Development Build Status - Mac/Linux Development Build Status - Windows Development Coverage Status

Package information: Python 3.7 License: LGPL v3 PyPI version

TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

TPOT Demo

TPOT will automate the most tedious part of machine learning by intelligently exploring thousands of possible pipelines to find the best one for your data.

An example Machine Learning pipeline

An example Machine Learning pipeline

Once TPOT is finished searching (or you get tired of waiting), it provides you with the Python code for the best pipeline it found so you can tinker with the pipeline from there.

An example TPOT pipeline

TPOT is built on top of scikit-learn, so all of the code it generates should look familiar... if you're familiar with scikit-learn, anyway.

TPOT is still under active development and we encourage you to check back on this repository regularly for updates.

For further information about TPOT, please see the project documentation.

License

Please see the repository license for the licensing and usage information for TPOT.

Generally, we have licensed TPOT to make it as widely usable as possible.

Installation

We maintain the TPOT installation instructions in the documentation. TPOT requires a working installation of Python.

Usage

TPOT can be used on the command line or with Python code.

Click on the corresponding links to find more information on TPOT usage in the documentation.

Examples

Classification

Below is a minimal working example with the optical recognition of handwritten digits dataset.

from tpot import TPOTClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split

digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target,
                                                    train_size=0.75, test_size=0.25, random_state=42)

tpot = TPOTClassifier(generations=5, population_size=50, verbosity=2, random_state=42)
tpot.fit(X_train, y_train)
print(tpot.score(X_test, y_test))
tpot.export('tpot_digits_pipeline.py')

Running this code should discover a pipeline that achieves about 98% testing accuracy, and the corresponding Python code should be exported to the tpot_digits_pipeline.py file and look similar to the following:

import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline, make_union
from sklearn.preprocessing import PolynomialFeatures
from tpot.builtins import StackingEstimator
from tpot.export_utils import set_param_recursive

# NOTE: Make sure that the outcome column is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1)
training_features, testing_features, training_target, testing_target = \
            train_test_split(features, tpot_data['target'], random_state=42)

# Average CV score on the training set was: 0.9799428471757372
exported_pipeline = make_pipeline(
    PolynomialFeatures(degree=2, include_bias=False, interaction_only=False),
    StackingEstimator(estimator=LogisticRegression(C=0.1, dual=False, penalty="l1")),
    RandomForestClassifier(bootstrap=True, criterion="entropy", max_features=0.35000000000000003, min_samples_leaf=20, min_samples_split=19, n_estimators=100)
)
# Fix random state for all the steps in exported pipeline
set_param_recursive(exported_pipeline.steps, 'random_state', 42)

exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)

Regression

Similarly, TPOT can optimize pipelines for regression problems. Below is a minimal working example with the practice Boston housing prices data set.

from tpot import TPOTRegressor
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split

housing = load_boston()
X_train, X_test, y_train, y_test = train_test_split(housing.data, housing.target,
                                                    train_size=0.75, test_size=0.25, random_state=42)

tpot = TPOTRegressor(generations=5, population_size=50, verbosity=2, random_state=42)
tpot.fit(X_train, y_train)
print(tpot.score(X_test, y_test))
tpot.export('tpot_boston_pipeline.py')

which should result in a pipeline that achieves about 12.77 mean squared error (MSE), and the Python code in tpot_boston_pipeline.py should look similar to:

import numpy as np
import pandas as pd
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import PolynomialFeatures
from tpot.export_utils import set_param_recursive

# NOTE: Make sure that the outcome column is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1)
training_features, testing_features, training_target, testing_target = \
            train_test_split(features, tpot_data['target'], random_state=42)

# Average CV score on the training set was: -10.812040755234403
exported_pipeline = make_pipeline(
    PolynomialFeatures(degree=2, include_bias=False, interaction_only=False),
    ExtraTreesRegressor(bootstrap=False, max_features=0.5, min_samples_leaf=2, min_samples_split=3, n_estimators=100)
)
# Fix random state for all the steps in exported pipeline
set_param_recursive(exported_pipeline.steps, 'random_state', 42)

exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)

Check the documentation for more examples and tutorials.

Contributing to TPOT

We welcome you to check the existing issues for bugs or enhancements to work on. If you have an idea for an extension to TPOT, please file a new issue so we can discuss it.

Before submitting any contributions, please review our contribution guidelines.

Having problems or have questions about TPOT?

Please check the existing open and closed issues to see if your issue has already been attended to. If it hasn't, file a new issue on this repository so we can review your issue.

Citing TPOT

If you use TPOT in a scientific publication, please consider citing at least one of the following papers:

Trang T. Le, Weixuan Fu and Jason H. Moore (2020). Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics.36(1): 250-256.

BibTeX entry:

@article{le2020scaling,
  title={Scaling tree-based automated machine learning to biomedical big data with a feature set selector},
  author={Le, Trang T and Fu, Weixuan and Moore, Jason H},
  journal={Bioinformatics},
  volume={36},
  number={1},
  pages={250--256},
  year={2020},
  publisher={Oxford University Press}
}

Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, and Jason H. Moore (2016). Automating biomedical data science through tree-based pipeline optimization. Applications of Evolutionary Computation, pages 123-137.

BibTeX entry:

@inbook{Olson2016EvoBio,
    author={Olson, Randal S. and Urbanowicz, Ryan J. and Andrews, Peter C. and Lavender, Nicole A. and Kidd, La Creis and Moore, Jason H.},
    editor={Squillero, Giovanni and Burelli, Paolo},
    chapter={Automating Biomedical Data Science Through Tree-Based Pipeline Optimization},
    title={Applications of Evolutionary Computation: 19th European Conference, EvoApplications 2016, Porto, Portugal, March 30 -- April 1, 2016, Proceedings, Part I},
    year={2016},
    publisher={Springer International Publishing},
    pages={123--137},
    isbn={978-3-319-31204-0},
    doi={10.1007/978-3-319-31204-0_9},
    url={http://dx.doi.org/10.1007/978-3-319-31204-0_9}
}

Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore (2016). Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science. Proceedings of GECCO 2016, pages 485-492.

BibTeX entry:

@inproceedings{OlsonGECCO2016,
    author = {Olson, Randal S. and Bartley, Nathan and Urbanowicz, Ryan J. and Moore, Jason H.},
    title = {Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science},
    booktitle = {Proceedings of the Genetic and Evolutionary Computation Conference 2016},
    series = {GECCO '16},
    year = {2016},
    isbn = {978-1-4503-4206-3},
    location = {Denver, Colorado, USA},
    pages = {485--492},
    numpages = {8},
    url = {http://doi.acm.org/10.1145/2908812.2908918},
    doi = {10.1145/2908812.2908918},
    acmid = {2908918},
    publisher = {ACM},
    address = {New York, NY, USA},
}

Alternatively, you can cite the repository directly with the following DOI:

DOI

Support for TPOT

TPOT was developed in the Computational Genetics Lab at the University of Pennsylvania with funding from the NIH under grant R01 AI117694. We are incredibly grateful for the support of the NIH and the University of Pennsylvania during the development of this project.

The TPOT logo was designed by Todd Newmuis, who generously donated his time to the project.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].