All Projects → eclipse → Upm

eclipse / Upm

Licence: mit
UPM is a high level repository that provides software drivers for a wide variety of commonly used sensors and actuators. These software drivers interact with the underlying hardware platform through calls to MRAA APIs.

Programming Languages

python
139335 projects - #7 most used programming language
java
68154 projects - #9 most used programming language
c
50402 projects - #5 most used programming language
cpp
1120 projects

Projects that are alternatives of or similar to Upm

Mycontroller V1 Legacy
The Open Source Controller
Stars: ✭ 135 (-78.3%)
Mutual labels:  sensor, iot, internet-of-things
Hivemq Mqtt Client
HiveMQ MQTT Client is an MQTT 5.0 and MQTT 3.1.1 compatible and feature-rich high-performance Java client library with different API flavours and backpressure support
Stars: ✭ 402 (-35.37%)
Mutual labels:  iot, internet-of-things
Ockam
End-to-end encrypted messaging and mutual authentication between cloud and edge-device applications
Stars: ✭ 395 (-36.5%)
Mutual labels:  iot, internet-of-things
Ttn
The Things Network Stack V2
Stars: ✭ 440 (-29.26%)
Mutual labels:  iot, internet-of-things
Wakaama
Eclipse Wakaama is a C implementation of the Open Mobile Alliance's LightWeight M2M protocol (LWM2M).
Stars: ✭ 358 (-42.44%)
Mutual labels:  iot, internet-of-things
Kura
Eclipse Kura™ project - http://eclipse.org/kura
Stars: ✭ 369 (-40.68%)
Mutual labels:  iot, internet-of-things
Esphome Core
🚨 No longer used 🚨 - The C++ framework behind ESPHome
Stars: ✭ 545 (-12.38%)
Mutual labels:  iot, internet-of-things
Blynk Library
Blynk library for embedded hardware. Works with Arduino, ESP8266, Raspberry Pi, Intel Edison/Galileo, LinkIt ONE, Particle Core/Photon, Energia, ARM mbed, etc.
Stars: ✭ 3,305 (+431.35%)
Mutual labels:  iot, internet-of-things
Openhab Core
Core framework of openHAB
Stars: ✭ 472 (-24.12%)
Mutual labels:  iot, internet-of-things
Leshan
Eclipse Leshan is an OMA Lightweight M2M (LWM2M) implementation in Java.
Stars: ✭ 483 (-22.35%)
Mutual labels:  iot, internet-of-things
Iotex Core
Official implementation of IoTeX blockchain protocol in Go.
Stars: ✭ 505 (-18.81%)
Mutual labels:  iot, internet-of-things
Iot Firstep
一个物联网(IoT)开发的入门教程。涉及单片机、上位机、移动应用、服务器后台开发的知识。以及蓝牙4.0、以太网模块的使用实例。
Stars: ✭ 555 (-10.77%)
Mutual labels:  iot, internet-of-things
Freedomotic
Open IoT Framework
Stars: ✭ 354 (-43.09%)
Mutual labels:  iot, internet-of-things
Cylon
JavaScript framework for robotics, drones, and the Internet of Things (IoT)
Stars: ✭ 3,862 (+520.9%)
Mutual labels:  iot, internet-of-things
Waterius
Передача показаний воды по Wi-Fi. Watermeter Wi-Fi transmitter.
Stars: ✭ 295 (-52.57%)
Mutual labels:  iot, internet-of-things
Macchina.io
macchina.io IoT Edge Device SDK is a powerful C++ and JavaScript SDK for edge devices, IoT gateways and connected embedded systems.
Stars: ✭ 437 (-29.74%)
Mutual labels:  sensor, iot
Windows Iotcore Samples
Official code samples repository for Windows 10 Internet of Things (IoT)
Stars: ✭ 580 (-6.75%)
Mutual labels:  iot, internet-of-things
Awesome Home Assistant
A curated list of amazingly awesome Home Assistant resources.
Stars: ✭ 3,487 (+460.61%)
Mutual labels:  iot, internet-of-things
Hawkbit
Eclipse hawkBit™
Stars: ✭ 283 (-54.5%)
Mutual labels:  iot, internet-of-things
Sensors Software
sourcecode for reading sensor data
Stars: ✭ 469 (-24.6%)
Mutual labels:  sensor, iot

Eclipse UPM Sensor and Actuator Repository

The Eclipse UPM repository provides software drivers for a wide variety of commonly used sensors and actuators. These software drivers interact with the underlying hardware platform (or microcontroller), as well as with the attached sensors, through calls to Eclipse MRAA APIs.

Programmers can access the interfaces for each sensor by including the sensor's corresponding header file and instantiating the associated sensor class. In the typical use case, a constructor initializes the sensor based on parameters that identify the sensor, the I/O protocol used and the pin location of the sensor. As of UPM 2.0, sensor initialization can also be done, in most cases, via overloaded constructors that accept string identifiers.

We endorse additions that implement the generic C and C++ interfaces provided with the libraries. With the 2.0 release, UPM introduces the following sensor interfaces:

iAcceleration, iAngle, iButton, iClock, iCollision, iDistance,
iDistanceInterrupter, iEC, iElectromagnet, iEmg, iGas, iGps, iGyroscope,
iHallEffect, iHeartRate, iHumidity, iLight, iLineFinder, iMagnetometer,
iMoisture, iMotion, iOrp, iPH, iPressure, iProximity, iTemperature, iVDiv,
iWater.

The developer community is invited to propose new interfaces for actuator types.

The UPM project is joining the Eclipse Foundation as an Eclipse IoT project. You can read more about this here.

Example

A sensor/actuator is expected to work as such (here is the MMA7660 accelerometer API):

  // Instantiate an MMA7660 on I2C bus 0
  upm::MMA7660 *accel = new upm::MMA7660(MMA7660_DEFAULT_I2C_BUS,
                                         MMA7660_DEFAULT_I2C_ADDR);

  // place device in standby mode so we can write registers
  accel->setModeStandby();

  // enable 64 samples per second
  accel->setSampleRate(MMA7660_AUTOSLEEP_64);

  // place device into active mode
  accel->setModeActive();

  while (shouldRun)
    {
      float ax, ay, az;

      accel->getAcceleration(&ax, &ay, &az);
      cout << "Acceleration: x = " << ax
           << "g y = " << ay
           << "g z = " << az
           << "g" << endl;

      usleep(500000);
    }

Browse through the list of all examples.

Multi-sensor samples for starter and specialized kits can be found in the iot-devkit-samples repository.

Supported Sensors

Supported sensor list from API documentation.

IDE Support and More

The UPM project includes support for multiple industrial-grade sensors, actuators, radios, protocols and standards in use today. It is also highly integrated with the Eclipse IDE through the help of the Foundation's partners. Learn more about tools.

Installing UPM

Find notes on how to install UPM on various OS'es on this page.

Building UPM

See building documentation here.

Build Status Quality Gate Status

Guidelines and rules for new UPM contributions

Before you begin development, take a look at our naming conventions. The name you pick for a newly added sensor needs to be unique in the UPM library.

Next, review the project's contribution guide.

Make sure you add yourself as an author on every new code file submitted. If you are providing a fix with significant changes, feel free to add yourself as a contributor. Signing-off your commits and accepting the ECA is mandatory for making new contributions to this project.

Documenting your code is also a big part of the task. We have a strict set of tags used to classify our sensors and their capabilities. You can find out more about this in our section on documenting a sensor API.

Finally, if you really want to ensure consistency with the rest of the library, and the intel-iot-devkit repositories in general, take a look at our extensive author guide.

API Documentation

API Compatibility

Even if we try our best not to, every once in a while we are forced to modify our API in a way that will break backwards compatibility. If you find yourself unable to compile code that was working fine before a library update, make sure you check the API changes section first.

Changelog

Version changelog here.

Known Limitations

List of known limitations here.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].