All Projects → gengshan-y → Vcn

gengshan-y / Vcn

Licence: mit
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

Projects that are alternatives of or similar to Vcn

Tfvos
Semi-Supervised Video Object Segmentation (VOS) with Tensorflow. Includes implementation of *MaskRNN: Instance Level Video Object Segmentation (NIPS 2017)* as part of the NIPS Paper Implementation Challenge.
Stars: ✭ 151 (+27.97%)
Mutual labels:  jupyter-notebook, optical-flow
Ransac Flow
(ECCV 2020) RANSAC-Flow: generic two-stage image alignment
Stars: ✭ 265 (+124.58%)
Mutual labels:  jupyter-notebook, optical-flow
Tfoptflow
Optical Flow Prediction with TensorFlow. Implements "PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume," by Deqing Sun et al. (CVPR 2018)
Stars: ✭ 415 (+251.69%)
Mutual labels:  jupyter-notebook, optical-flow
Dynamic neural manifold
Stars: ✭ 117 (-0.85%)
Mutual labels:  jupyter-notebook
Crypto portfolio analysis
A Jupyter notebook I use to analyze my crypto portfolio.
Stars: ✭ 117 (-0.85%)
Mutual labels:  jupyter-notebook
Analyzing neural time series
python implementations of Analyzing Neural Time Series Textbook
Stars: ✭ 117 (-0.85%)
Mutual labels:  jupyter-notebook
Reinvent2019 Aim362 Sagemaker Debugger Model Monitor
Build, train & debug, and deploy & monitor with Amazon SageMaker
Stars: ✭ 118 (+0%)
Mutual labels:  jupyter-notebook
Hands On Recommendation Systems With Python
Hands-On Recommendation Systems with Python published by Packt
Stars: ✭ 117 (-0.85%)
Mutual labels:  jupyter-notebook
Machinelearninginjulia2020
Resources for a 3.5 hour workshop on machine learning using the MLJ toolbox
Stars: ✭ 118 (+0%)
Mutual labels:  jupyter-notebook
The Building Data Genome Project
A collection of non-residential buildings for performance analysis and algorithm benchmarking
Stars: ✭ 117 (-0.85%)
Mutual labels:  jupyter-notebook
Python Machine Learning Zh
Python机器学习,机器学习入门首选。
Stars: ✭ 117 (-0.85%)
Mutual labels:  jupyter-notebook
Hyperopt Doc Zh
Github开源项目hyperopt系列的中文文档,以及学习教程等
Stars: ✭ 117 (-0.85%)
Mutual labels:  jupyter-notebook
Ipython Tikzmagic
IPython magics for generating figures with TikZ
Stars: ✭ 117 (-0.85%)
Mutual labels:  jupyter-notebook
Docker For Data Science Tutorial
Materials for "Docker for Data Science" tutorial presented at PyCon 2018 in Cleveland, OH
Stars: ✭ 118 (+0%)
Mutual labels:  jupyter-notebook
Synapse
Samples for Azure Synapse Analytics
Stars: ✭ 115 (-2.54%)
Mutual labels:  jupyter-notebook
Dl cshse ami
Материалы курса "Глубинное обучение", ФКН ВШЭ, бакалаврская программа ПМИ
Stars: ✭ 117 (-0.85%)
Mutual labels:  jupyter-notebook
Pygame
Games that i did using pygame library
Stars: ✭ 118 (+0%)
Mutual labels:  jupyter-notebook
Python Mathematics Handbook
A set of notebooks for an introduction to Python for Mathematicians.
Stars: ✭ 117 (-0.85%)
Mutual labels:  jupyter-notebook
Ml Fraud Detection
Credit card fraud detection through logistic regression, k-means, and deep learning.
Stars: ✭ 117 (-0.85%)
Mutual labels:  jupyter-notebook
Wiki Detox
See https://meta.wikimedia.org/wiki/Research:Modeling_Talk_Page_Abuse
Stars: ✭ 117 (-0.85%)
Mutual labels:  jupyter-notebook

VCN: Volumetric correspondence networks for optical flow

[project website]

Requirements

Pre-trained models

To test on any two images

Running visualize.ipynb gives you the following flow visualizations with color and vectors. Note: the sintel model "./weights/sintel-ft-trainval/finetune_67999.tar" is trained on multiple datasets and generalizes better than the KITTI model.

KITTI

This correspondens to the entry on the leaderboard (Fl-all=6.30%).

Evaluate on KITTI-15 benchmark

To run + visualize on KITTI-15 test set,

modelname=kitti-ft-trainval
i=149999
CUDA_VISIBLE_DEVICES=0 python submission.py --dataset 2015test --datapath dataset/kitti_scene/testing/   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/finetune_$i.tar  --maxdisp 512 --fac 2
python eval_tmp.py --path ./weights/$modelname/ --vis yes --dataset 2015test
Evaluate on KITTI-val

To see the details of the train-val split, please scroll down to "note on train-val" and run dataloader/kitti15list_val.py, dataloader/kitti15list_train.py, dataloader/sitnellist_train.py, and dataloader/sintellist_val.py.

To evaluate on the 40 validation images of KITTI-15 (0,5,...195), (also assuming the data is at /ssd/kitti_scene)

modelname=kitti-ft-trainval
i=149999
CUDA_VISIBLE_DEVICES=0 python submission.py --dataset 2015 --datapath /ssd/kitti_scene/training/   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/finetune_$i.tar  --maxdisp 512 --fac 2
python eval_tmp.py --path ./weights/$modelname/ --vis no --dataset 2015

To evaluate + visualize on KITTI-15 validation set,

python eval_tmp.py --path ./weights/$modelname/ --vis yes --dataset 2015

Evaluation error on 40 validation images : Fl-err = 3.9, EPE = 1.144

Sintel

This correspondens to the entry on the leaderboard (EPE-all-final = 4.404, EPE-all-clean = 2.808).

Evaluate on Sintel-val

To evaluate on Sintel validation set,

modelname=sintel-ft-trainval
i=67999
CUDA_VISIBLE_DEVICES=0 python submission.py --dataset sintel --datapath /ssd/rob_flow/training/   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/finetune_$i.tar  --maxdisp 448 --fac 1.4
python eval_tmp.py --path ./weights/$modelname/ --vis no --dataset sintel

Evaluation error on sintel validation images: Fl-err = 7.9, EPE = 2.351

Train the model

We follow the same stage-wise training procedure as prior work: Chairs->Things->KITTI or Chairs->Things->Sintel, but uses much lesser iterations. If you plan to train the model and reproduce the numbers, please check out our supplementary material for the differences in hyper-parameters with FlowNet2 and PWCNet.

Pretrain on flying chairs and flying things

Make sure you have downloaded flying chairs and flying things subset, and placed them under the same folder, say /ssd/.

To first train on flying chairs for 140k iterations with a batchsize of 8, run (assuming you have two gpus)

CUDA_VISIBLE_DEVICES=0,1 python main.py --maxdisp 256 --fac 1 --database /ssd/ --logname chairs-0 --savemodel /data/ptmodel/  --epochs 1000 --stage chairs --ngpus 2

Then we want to fine-tune on flying things for 80k iterations with a batchsize of 8, resume from your pre-trained model or use our pretrained model

CUDA_VISIBLE_DEVICES=0,1 python main.py --maxdisp 256 --fac 1 --database /ssd/ --logname things-0 --savemodel /data/ptmodel/  --epochs 1000 --stage things --ngpus 2 --loadmodel ./weights/charis/finetune_141999.tar --retrain false

Note that to resume the number of iterations, put the iteration to start from in iter_counts-(your suffix).txt. In this example, I'll put 141999 in iter_counts-0.txt. Be aware that the program reads/writes to iter_counts-(suffix).txt at training time, so you may want to use different suffix when multiple training programs are running at the same time.

Finetune on KITTI / Sintel

Please first download the kitti 2012/2015 flow dataset if you want to fine-tune on kitti. Download rob_devkit if you want to fine-tune on sintel.

To fine-tune on KITTI with a batchsize of 16, run

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --maxdisp 512 --fac 2 --database /ssd/ --logname kitti-trainval-0 --savemodel /data/ptmodel/  --epochs 1000 --stage 2015trainval --ngpus 4 --loadmodel ./weights/things/finetune_211999.tar --retrain true

To fine-tune on Sintel with a batchsize of 16, run

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --maxdisp 448 --fac 1.4 --database /ssd/ --logname sintel-trainval-0 --savemodel /data/ptmodel/  --epochs 1000 --stage sinteltrainval --ngpus 4 --loadmodel ./weights/things/finetune_239999.tar --retrain true

Note on train-val

  • To tune hyper-parameters, we use a train-val split for kitti and sintel, which is not covered by the above procedure.
  • For kitti we use every 5th image in the training set (0,5,10,...195) for validation, and the rest for training; while for Sintel, we manually select several sequences for validation.
  • If you plan to use our split, put "--stage 2015train" or "--stage sinteltrain" for training.
  • The numbers in Tab.3 of the paper is on the whole train-val set (all the data with ground-truth).
  • You might find run.sh helpful to run evaluation on KITTI/Sintel.

Measure FLOPS

python flops.py

gives

PWCNet: flops(G)/params(M):90.8/9.37

VCN: flops(G)/params(M):96.5/6.23

Note on inference time

The current implementation runs at 180ms/pair on KITTI-sized images at inference time. A rough breakdown of running time is: feature extraction - 4.9%, feature correlation - 8.7%, separable 4D convolutions - 56%, trun. soft-argmin (soft winner-take-all) - 20% and hypotheses fusion - 9.5%. A detailed breakdown is shown below in the form "name-level percentage".

Note that separable 4D convolutions use less FLOPS than 2D convolutions (i.e., feature extraction module + hypotheses fusion module, 47.8 v.s. 53.3 Gflops) but take 4X more time (56% v.s. 14.4%). One reason might be that pytorch (also other packages) is more friendly to networks with more feature channels than those with large spatial size given the same Flops. This might be fixed at the conv kernel / hardware level.

Besides, the truncated soft-argmin is implemented with 3D max pooling, which is inefficient and takes more time than expected.

Acknowledgement

Thanks ClementPinard, Lyken17, NVlabs and many others for open-sourcing their code.

Citation

@inproceedings{yang2019vcn,
  title={Volumetric Correspondence Networks for Optical Flow},
  author={Yang, Gengshan and Ramanan, Deva},
  booktitle={NeurIPS},
  year={2019}
}
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].