All Projects → francisrstokes → 16bitjs

francisrstokes / 16bitjs

Licence: mit
💻 A 16-bit virtual machine, including assembly language with 37 instructions, binary assembler, and a step through debugger

Programming Languages

javascript
184084 projects - #8 most used programming language
assembly
5116 projects

Projects that are alternatives of or similar to 16bitjs

RSqueak
A Squeak/Smalltalk VM written in RPython.
Stars: ✭ 78 (-81.73%)
Mutual labels:  vm, virtual-machine
tsharkVM
tshark + ELK analytics virtual machine
Stars: ✭ 51 (-88.06%)
Mutual labels:  vm, virtual-machine
Animach
Scheme语言实现和运行时环境 / A Scheme runtime & implementation
Stars: ✭ 45 (-89.46%)
Mutual labels:  vm, virtual-machine
butterfly
Butterfly connects Virtual Machines and control their traffic flow
Stars: ✭ 48 (-88.76%)
Mutual labels:  vm, virtual-machine
RISVM
A low overhead, embeddable bytecode virtual machine in C++
Stars: ✭ 21 (-95.08%)
Mutual labels:  vm, virtual-machine
SBTCVM-Gen2-9
SBTCVM is a virtual machine implementation of a balanced ternary (base 3) computer. Features several compiled languages for ternary software development.
Stars: ✭ 32 (-92.51%)
Mutual labels:  vm, virtual-machine
vm-automation
VirtualBox automation using Python
Stars: ✭ 1 (-99.77%)
Mutual labels:  vm, virtual-machine
clox
A virtual machine and a tree-walk interpreter for the Lox programming language in C89 🌀
Stars: ✭ 38 (-91.1%)
Mutual labels:  vm, virtual-machine
open-semantic-desktop-search
Virtual Machine for Desktop Search with Open Semantic Search
Stars: ✭ 22 (-94.85%)
Mutual labels:  vm, virtual-machine
SherwoodArch
The Sherwood Architecture is a custom 64-Bit RISC based CPU architecture.
Stars: ✭ 13 (-96.96%)
Mutual labels:  cpu, virtual-machine
c8c
The chip8 compiler, assembler, and virtual machine
Stars: ✭ 110 (-74.24%)
Mutual labels:  vm, virtual-machine
Virtualbox Python
Complete implementation of VirtualBox's COM API with a Pythonic interface.
Stars: ✭ 277 (-35.13%)
Mutual labels:  virtual-machine, vm
specter
a (tiny) VM project built with Go
Stars: ✭ 57 (-86.65%)
Mutual labels:  vm, virtual-machine
l1vm
L1VM - a tiny virtual machine with a 64 bit core
Stars: ✭ 112 (-73.77%)
Mutual labels:  cpu, virtual
Tagha
Minimal, low-level, fast, and self-contained register-based bytecode virtual machine/runtime environment.
Stars: ✭ 101 (-76.35%)
Mutual labels:  vm, virtual-machine
kcs
Scripting in C with JIT(x64)/VM.
Stars: ✭ 25 (-94.15%)
Mutual labels:  vm, virtual-machine
Emupedia.github.io
The purpose of Emupedia is to serve as a nonprofit meta-resource, hub and community for those interested mainly in video game preservation which aims to digitally collect, archive and preserve games and software to make them available online accessible by a user-friendly UI that simulates several retro operating systems for educational purposes.
Stars: ✭ 206 (-51.76%)
Mutual labels:  virtual-machine, virtual
The Hack General Purpose Computer
Using HDL, from Boolean algebra and elementary logic gates to building a Central Processing Unit, a memory system, and a hardware platform, leading up to a 16-bit general-purpose computer. Then, implementing the modern software hierarchy designed to enable the translation and execution of object-based, high-level languages on a bare-bone computer hardware platform; Including Virtual machine,Compiler and Operating system.
Stars: ✭ 39 (-90.87%)
Mutual labels:  cpu, virtual-machine
js5005
js5005 is a virtual CPU with every logic gate simulated. A pretty interface, a built in assembler, display, and 256 bytes of RAM to boot. It's the better i4004.
Stars: ✭ 14 (-96.72%)
Mutual labels:  vm, virtual-machine
Smlvm
Smallrepo Virtual Machine
Stars: ✭ 265 (-37.94%)
Mutual labels:  virtual-machine, vm

16-bit Javascript VM

The project consists of:

  • The definition of an assembly language with 37 instructions
  • An assembler to transform a *.asm file into a binary executable format
  • A small virtual machine which simulates a basic computer architecture: A memory space, stack, and CPU with 4 general purpose registers and a fetch-decode-execute cycle
  • A compiler for the brainfuck language directly to the binary executable format

The virtual machine can run in two modes: run (default) and step. Run mode simply run` the entire program in sucession. Step mode runs the program in a debug environment, pausing before executing each instruction and displaying the entire state of the machine.

Running the VM

Running the assembler

node src/assembler -i {infile.asm} -o {outfile.bin}

Running the brainfuck compiler

node src/compilers/bf -i {infile.bf} -o {outfile.bin}

Running a program

node src -p {program.bin}

Assembly language

The assembly language consists of 16 distinct instructions which support all the basic features you would expect: Arithmetic, Loading values to and from memory/registers, conditional/non conditional jumps, functions, system calls for reading and and writing stdio etc.

Comments start with a ; character. Labels can be defined by :some_label_name on their own line and then referenced in an instruction like so: LDV16 A, :some_label_name.

Examples

A couple of examples illustrating the language can be found in the asm/ folder.

Instruction set

Real instructions

Instruction Arguments 16 bit representation Description
MVR D, S, V VVVVVVVVSSDDIIII Add a sign-extended byte to value at source register and move it to destination register
MVV D, V, O VVVVVVVVOODDIIII Move or add an immediate value into destination register, depending on O.
LDA D, M MMMMMMMMMMDDIIII Load a value from memory into destination register using direct address
STA D, M MMMMMMMMMMDDIIII Store the value in destination register into memory using direct address
LDR D, S[, V] VVVVVVVVSSDDIIII Load from memory into the destination register using the source register as a base address
STR D, S[, V] XXXXXXXXSSDDIIII Store the value in source register into the memory using the destination register as a base address
ATH D, S, O, M, B BBBMOOOOSSDDIIII Perform an arithmetic operation on the source and destination registers. O specifies the operation (listed below) and M is the mode, where 0 = place result in destination register and 1 = place result in source register. If the instruction is right or left shift then B specifies the shifting value
CAL D XXXXXXXXXXDDIIII Call a function in memory pointed at by the destination register
JCP D, S, A, O XXXOOOAASSDDIIII Jump to memory address pointed at by the address register, depending on the comparison specified by the O operation of the destination register and the source register. Operation table specified below.
PSH S XXXXXXXXSSXXIIII Push the value in source register onto the stack
POP D XXXXXXXXXXDDIIII Pop the stack into the destination register
JMP M VVVVVVVVVVVVIIII Add a signed 12-bit offset to the program counter.
JMR S XXXXXXXXSSXXIIII Jump to the address pointed at by the source register
NOA O XXXXXXXXOOOOIIII No Argument calls. This includes SYS, HLT and RET, which have pseudo instructions

Pseudo Instructions

Pseudo instructions are prepocessed by the assembler and expanded into combinations of the real instructions.

Instruction Arguments Expanded length Description
MVI D, V 1 Set a zero-extended immediate value to destination register
LDV D, S, V 1 Alias for MVI to keep retro-compatibility in assembly source
MUI D, V 1 Set a 8-bit left shifted immediate value to destination register
ADI D, S 1 Add a sign-extended immediate value to destination register
INC D 1 Alias for ADI 1
DEC D 1 Alias for ADI -1
AUI D, S 1 Add a 8-bit left shifted immediate value to destination register
MOV D, S 1 Copy value at source register to destination register
RET 1 Return from function
HLT 1 Program halt
SYS 1 Perform a system call. This is described below in more detail.
LDM D, S 1 Alias for STA to keep retro-compatibility in assembly source
LDP D, S 1 Alias for STR without offset to keep retro-compatibility in assembly source
ADD D, S 1 Add destination to source and store the result in destination
ADDS D, S 1 Add destination to source and store the result in source
SUB D, S 1 Subtract destination from source and store the result in destination
SUBS D, S 1 Subtract destination from source and store the result in source
MUL D, S 1 Multiply destination with source and store the result in destination
MULS D, S 1 Multiply destination with source and store the result in source
DIV D, S 1 Divide destination by source and store the result in destination
DIVS D, S 1 Divide destination by source and store the result in source
LSF D, A 1 Binary shift left the destination register by amount A (max 7)
LSR D, A 1 Binary shift right the destination register by amount A (max 7)
AND D, S 1 Binary and the destination and source, and store the result in the destination
OR D, S 1 Binary or the destination and source, and store the result in the destination
XOR D, S 1 Binary exclusive-or the destination and source, and store the result in the destination
NOT D 1 Binary not (invert) the destination
LDV16 D, V 2 Load a 16 bit value into destination
SWP D, S 3 Swap the values in the source and destination registers
JEQ D, S, A 1 Jump to address A if value in destination register is equal to the source register.
JNE D, S, A 1 Jump to address A if value in destination register is not equal to the source register.
JLT D, S, A 1 Jump to address A if value in destination register is less than the source register.
JGT D, S, A 1 Jump to address A if value in destination register is greater than the source register.
JLE D, S, A 1 Jump to address A if value in destination register is less than or equal to the source register.
JGE D, S, A 1 Jump to address A if value in destination register is greater than or equal to the source register.
JZE D, S, A 1 Jump to address A if value in destination register is zero.
JNZ D, S, A 1 Jump to address A if value in destination register is not zero.

Arithmetic Operation table

Operation Value
Add 0000
Subtract 0001
Multiply 0010
Divide 0011
Increment 0100
Decrement 0101
Left shift 0110
Right shift 0111
And 1000
Or 1001
Xor 1010
Not 1011

Conditional Jump Operation table

Operation Value
Equal 000
Not equal 001
Less than 010
Greater than 011
Less than or equal 100
Greater than or equal 101
Zero 110
Not zero 111

System calls

A system call in the VM allows the program to ask resources outside of it's context, such as communication with stdin and stdout. System calls are passed off to the os module and can return their results directly into the CPUs registers.

System call Call code
Write to stdout 0000
Read from stdin buffer 0001
I/O Modes
Output
Mode Description B C D
0 Output register in decimal Destination Mode
1 Output register in binary Destination Mode
2 Output register in hex Destination Mode
3 Output register as a character Destination Mode
4 Output string in memory address pointed to by register Start address Mode
Input
Mode Description B C D
0 Read single character value of input into register Destination - -

Debugger

Running with the step option (node src -p {program.bin} --step), enables the step through debugger, giving a overview of memory, stack and registers as the program executes.

Memory:
0000    08c1 0009 0008 0009 1d01 030b 1c81 030b 1d41 030b 1941 030b 0281 030b 000a 16c1
0010    0009 0008 0009 1d01 030b 1c81 030b 1d41 030b 1941 030b 0281 030b 000a 0081 000b
0020    2781 0009 0008 0281 0291 0009 1141 030b 1c41 030b 1d41 030b 1841 030b 1b01 030b
0030    0801 030b 18c1 030b 1a01 030b 1941 030b 18c1 030b 1ac1 030b 0e81 030b 000a 10d7
0040    11a1 0089 0008 1351 0049 0008 0049 0010 000a 1357 00e1 0089 0008 0009 1981 030b
0050    1841 030b 1b01 030b 1cc1 030b 1941 030b 0281 030b 000a 02c1 0291 0009 1381 030b
0060    1bc1 030b 1d01 030b 0801 030b 1141 030b 1c41 030b 1d41 030b 1841 030b 1b01 030b
0070    0801 030b 18c1 030b 1a01 030b 1941 030b 18c1 030b 1ac1 030b 0e81 030b 000a 20d7
0080    21a1 0089 0008 2351 0049 0008 0049 0010 000a 2357 2421 0089 0008 04a1 0089 0008
0090    0009 1981 030b 1841 030b 1b01 030b 1cc1 030b 1941 030b 0281 030b 000a 000c 0000
00a0    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
00b0    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
00c0    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
00d0    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
00e0    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
00f0    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0100
Page 1/255

Stack:
0000    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0010    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0020    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0030    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0040    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0050    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0060    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0070    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0080    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0090    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
00a0    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
00b0    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
00c0    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
00d0    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
00e0    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
00f0    0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Instruction: (LDV) 0000100011000001
Registers:
A: 0000 B: 0000 C: 0000 D: 0000 IP: 0000        SP: 0000

(s)tep (e)xit (n)ext / (p)revious memory page >>>
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].