All Projects → openvinotoolkit → anomalib

openvinotoolkit / anomalib

Licence: Apache-2.0 license
An anomaly detection library comprising state-of-the-art algorithms and features such as experiment management, hyper-parameter optimization, and edge inference.

Programming Languages

python
139335 projects - #7 most used programming language

Projects that are alternatives of or similar to anomalib

MVTec-Anomaly-Detection
This project proposes an end-to-end framework for semi-supervised Anomaly Detection and Segmentation in images based on Deep Learning.
Stars: ✭ 161 (-86.69%)
Mutual labels:  anomaly-detection, anomaly-segmentation, anomaly-localization
Pysad
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)
Stars: ✭ 87 (-92.81%)
Mutual labels:  unsupervised-learning, anomaly-detection
pytod
TOD: GPU-accelerated Outlier Detection via Tensor Operations
Stars: ✭ 131 (-89.17%)
Mutual labels:  unsupervised-learning, anomaly-detection
Pyod
A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)
Stars: ✭ 5,083 (+320.08%)
Mutual labels:  unsupervised-learning, anomaly-detection
Isolation Forest
A Spark/Scala implementation of the isolation forest unsupervised outlier detection algorithm.
Stars: ✭ 139 (-88.51%)
Mutual labels:  unsupervised-learning, anomaly-detection
Novelty Detection
Latent space autoregression for novelty detection.
Stars: ✭ 152 (-87.44%)
Mutual labels:  unsupervised-learning, anomaly-detection
Remixautoml
R package for automation of machine learning, forecasting, feature engineering, model evaluation, model interpretation, data generation, and recommenders.
Stars: ✭ 159 (-86.86%)
Mutual labels:  unsupervised-learning, anomaly-detection
drama
Main component extraction for outlier detection
Stars: ✭ 17 (-98.6%)
Mutual labels:  unsupervised-learning, anomaly-detection
CCD
Code for 'Constrained Contrastive Distribution Learning for Unsupervised Anomaly Detection and Localisation in Medical Images' [MICCAI 2021]
Stars: ✭ 30 (-97.52%)
Mutual labels:  unsupervised-learning, anomaly-detection
Dual-CNN-Models-for-Unsupervised-Monocular-Depth-Estimation
Dual CNN Models for Unsupervised Monocular Depth Estimation
Stars: ✭ 36 (-97.02%)
Mutual labels:  unsupervised-learning
mmselfsup
OpenMMLab Self-Supervised Learning Toolbox and Benchmark
Stars: ✭ 2,315 (+91.32%)
Mutual labels:  unsupervised-learning
deepOF
TensorFlow implementation for "Guided Optical Flow Learning"
Stars: ✭ 26 (-97.85%)
Mutual labels:  unsupervised-learning
USOT
[ICCV2021] Learning to Track Objects from Unlabeled Videos
Stars: ✭ 52 (-95.7%)
Mutual labels:  unsupervised-learning
amr
Official adversarial mixup resynthesis repository
Stars: ✭ 31 (-97.44%)
Mutual labels:  unsupervised-learning
awesome-graph-self-supervised-learning
Awesome Graph Self-Supervised Learning
Stars: ✭ 805 (-33.47%)
Mutual labels:  unsupervised-learning
strollr2d icassp2017
Image Denoising Codes using STROLLR learning, the Matlab implementation of the paper in ICASSP2017
Stars: ✭ 22 (-98.18%)
Mutual labels:  unsupervised-learning
yolov5 cpp openvino
用c++实现了yolov5使用openvino的部署
Stars: ✭ 222 (-81.65%)
Mutual labels:  openvino
M-NMF
An implementation of "Community Preserving Network Embedding" (AAAI 2017)
Stars: ✭ 119 (-90.17%)
Mutual labels:  unsupervised-learning
sutton-barto-rl-exercises
📖Learning reinforcement learning by implementing the algorithms from reinforcement learning an introduction
Stars: ✭ 77 (-93.64%)
Mutual labels:  unsupervised-learning
PANDA
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation (CVPR 2021)
Stars: ✭ 64 (-94.71%)
Mutual labels:  anomaly-detection

A library for benchmarking, developing and deploying deep learning anomaly detection algorithms


Key FeaturesGetting StartedDocsLicense

python pytorch openvino comet Codacy Badge black Nightly-Regression Test Pre-Merge Checks Codacy Badge Docs Downloads


Introduction

Anomalib is a deep learning library that aims to collect state-of-the-art anomaly detection algorithms for benchmarking on both public and private datasets. Anomalib provides several ready-to-use implementations of anomaly detection algorithms described in the recent literature, as well as a set of tools that facilitate the development and implementation of custom models. The library has a strong focus on image-based anomaly detection, where the goal of the algorithm is to identify anomalous images, or anomalous pixel regions within images in a dataset. Anomalib is constantly updated with new algorithms and training/inference extensions, so keep checking!

Sample Image

Key features:

  • The largest public collection of ready-to-use deep learning anomaly detection algorithms and benchmark datasets.
  • PyTorch Lightning based model implementations to reduce boilerplate code and limit the implementation efforts to the bare essentials.
  • All models can be exported to OpenVINO Intermediate Representation (IR) for accelerated inference on intel hardware.
  • A set of inference tools for quick and easy deployment of the standard or custom anomaly detection models.

Getting Started

To get an overview of all the devices where anomalib as been tested thoroughly, look at the Supported Hardware section in the documentation.

Jupyter Notebooks

For getting started with a Jupyter Notebook, please refer to the Notebooks folder of this repository. Additionally, you can refer to a few created by the community:

Open In Colab by @bth5

by @innat

PyPI Install

You can get started with anomalib by just using pip.

pip install anomalib

Local Install

It is highly recommended to use virtual environment when installing anomalib. For instance, with anaconda, anomalib could be installed as,

yes | conda create -n anomalib_env python=3.8
conda activate anomalib_env
git clone https://github.com/openvinotoolkit/anomalib.git
cd anomalib
pip install -e .

Training

⚠️ Anomalib < v.0.4.0

By default python tools/train.py runs PADIM model on leather category from the MVTec AD (CC BY-NC-SA 4.0) dataset.

python tools/train.py    # Train PADIM on MVTec AD leather

Training a model on a specific dataset and category requires further configuration. Each model has its own configuration file, config.yaml , which contains data, model and training configurable parameters. To train a specific model on a specific dataset and category, the config file is to be provided:

python tools/train.py --config <path/to/model/config.yaml>

For example, to train PADIM you can use

python tools/train.py --config anomalib/models/padim/config.yaml

Alternatively, a model name could also be provided as an argument, where the scripts automatically finds the corresponding config file.

python tools/train.py --model padim

where the currently available models are:

Feature extraction & (pre-trained) backbones

The pre-trained backbones come from PyTorch Image Models (timm), which are wrapped by FeatureExtractor.

For more information, please check our documentation or the section about feature extraction in "Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide".

Tips:

  • Papers With Code has an interface to easily browse models available in timm: https://paperswithcode.com/lib/timm

  • You can also find them with the function timm.list_models("resnet*", pretrained=True)

The backbone can be set in the config file, two examples below.

Anomalib < v.0.4.0

model:
  name: cflow
  backbone: wide_resnet50_2
  pre_trained: true
Anomalib > v.0.4.0 Beta - Subject to Change

Anomalib >= v.0.4.0

model:
  class_path: anomalib.models.Cflow
  init_args:
    backbone: wide_resnet50_2
    pre_trained: true

Custom Dataset

It is also possible to train on a custom folder dataset. To do so, data section in config.yaml is to be modified as follows:

dataset:
  name: <name-of-the-dataset>
  format: folder
  path: <path/to/folder/dataset>
  normal_dir: normal # name of the folder containing normal images.
  abnormal_dir: abnormal # name of the folder containing abnormal images.
  normal_test_dir: null # name of the folder containing normal test images.
  task: segmentation # classification or segmentation
  mask: <path/to/mask/annotations> #optional
  extensions: null
  split_ratio: 0.2 # ratio of the normal images that will be used to create a test split
  image_size: 256
  train_batch_size: 32
  test_batch_size: 32
  num_workers: 8
  transform_config:
    train: null
    val: null
  create_validation_set: true
  tiling:
    apply: false
    tile_size: null
    stride: null
    remove_border_count: 0
    use_random_tiling: False
    random_tile_count: 16

⚠️ Anomalib > v.0.4.0 Beta - Subject to Change

We introduce a new CLI approach that uses PyTorch Lightning CLI. To train a model using the new CLI, one would call the following:

anomalib fit --config <path/to/new/config/file>

For instance, to train a PatchCore model, the following command would be run:

anomalib fit --config ./configs/model/patchcore.yaml

The new CLI approach offers a lot more flexibility, details of which are explained in the documentation.

Inference

⚠️ Anomalib < v.0.4.0

Anomalib includes multiple tools, including Lightning, Gradio, and OpenVINO inferencers, for performing inference with a trained model.

The following command can be used to run PyTorch Lightning inference from the command line:

python tools/inference/lightning_inference.py -h

As a quick example:

python tools/inference/lightning_inference.py \
    --config anomalib/models/padim/config.yaml \
    --weights results/padim/mvtec/bottle/weights/model.ckpt \
    --input datasets/MVTec/bottle/test/broken_large/000.png \
    --output results/padim/mvtec/bottle/images

Example OpenVINO Inference:

python tools/inference/openvino_inference.py \
    --config anomalib/models/padim/config.yaml \
    --weights results/padim/mvtec/bottle/openvino/openvino_model.bin \
    --meta_data results/padim/mvtec/bottle/openvino/meta_data.json \
    --input datasets/MVTec/bottle/test/broken_large/000.png \
    --output results/padim/mvtec/bottle/images

Ensure that you provide path to meta_data.json if you want the normalization to be applied correctly.

You can also use Gradio Inference to interact with the trained models using a UI. Refer to our guide for more details.

A quick example:

python tools/inference/gradio_inference.py \
        --config ./anomalib/models/padim/config.yaml \
        --weights ./results/padim/mvtec/bottle/weights/model.ckpt

Exporting Model to ONNX or OpenVINO IR

It is possible to export your model to ONNX or OpenVINO IR

If you want to export your PyTorch model to an OpenVINO model, ensure that export_mode is set to "openvino" in the respective model config.yaml.

optimization:
  export_mode: "openvino" # options: openvino, onnx

Hyperparameter Optimization

To run hyperparameter optimization, use the following command:

python tools/hpo/sweep.py \
    --model padim --model_config ./path_to_config.yaml \
    --sweep_config tools/hpo/sweep.yaml

For more details refer the HPO Documentation

Benchmarking

To gather benchmarking data such as throughput across categories, use the following command:

python tools/benchmarking/benchmark.py \
    --config <relative/absolute path>/<paramfile>.yaml

Refer to the Benchmarking Documentation for more details.

Experiment Management

Anomablib is integrated with various libraries for experiment tracking such as Comet, tensorboard, and wandb through pytorch lighting loggers.

Below is an example of how to enable logging for hyper-parameters, metrics, model graphs, and predictions on images in the test data-set

visualization:
  log_images: True # log images to the available loggers (if any)
  mode: full # options: ["full", "simple"]

 logging:
  logger: [comet, tensorboard, wandb]
  log_graph: True

For more information, refer to the Logging Documentation

Note: Set your API Key for Comet.ml via comet_ml.init() in interactive python or simply run export COMET_API_KEY=<Your API Key>

Datasets

anomalib supports MVTec AD (CC BY-NC-SA 4.0) and BeanTech (CC-BY-SA) for benchmarking and folder for custom dataset training/inference.

MVTec AD Dataset

MVTec AD dataset is one of the main benchmarks for anomaly detection, and is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).

Image-Level AUC

Model Avg Carpet Grid Leather Tile Wood Bottle Cable Capsule Hazelnut Metal Nut Pill Screw Toothbrush Transistor Zipper
PatchCore Wide ResNet-50 0.980 0.984 0.959 1.000 1.000 0.989 1.000 0.990 0.982 1.000 0.994 0.924 0.960 0.933 1.000 0.982
PatchCore ResNet-18 0.973 0.970 0.947 1.000 0.997 0.997 1.000 0.986 0.965 1.000 0.991 0.916 0.943 0.931 0.996 0.953
CFlow Wide ResNet-50 0.962 0.986 0.962 1.0 0.999 0.993 1.0 0.893 0.945 1.0 0.995 0.924 0.908 0.897 0.943 0.984
PaDiM Wide ResNet-50 0.950 0.995 0.942 1.0 0.974 0.993 0.999 0.878 0.927 0.964 0.989 0.939 0.845 0.942 0.976 0.882
PaDiM ResNet-18 0.891 0.945 0.857 0.982 0.950 0.976 0.994 0.844 0.901 0.750 0.961 0.863 0.759 0.889 0.920 0.780
STFPM Wide ResNet-50 0.876 0.957 0.977 0.981 0.976 0.939 0.987 0.878 0.732 0.995 0.973 0.652 0.825 0.5 0.875 0.899
STFPM ResNet-18 0.893 0.954 0.982 0.989 0.949 0.961 0.979 0.838 0.759 0.999 0.956 0.705 0.835 0.997 0.853 0.645
DFM Wide ResNet-50 0.891 0.978 0.540 0.979 0.977 0.974 0.990 0.891 0.931 0.947 0.839 0.809 0.700 0.911 0.915 0.981
DFM ResNet-18 0.894 0.864 0.558 0.945 0.984 0.946 0.994 0.913 0.871 0.979 0.941 0.838 0.761 0.95 0.911 0.949
DFKDE Wide ResNet-50 0.774 0.708 0.422 0.905 0.959 0.903 0.936 0.746 0.853 0.736 0.687 0.749 0.574 0.697 0.843 0.892
DFKDE ResNet-18 0.762 0.646 0.577 0.669 0.965 0.863 0.951 0.751 0.698 0.806 0.729 0.607 0.694 0.767 0.839 0.866
GANomaly 0.421 0.203 0.404 0.413 0.408 0.744 0.251 0.457 0.682 0.537 0.270 0.472 0.231 0.372 0.440 0.434

Pixel-Level AUC

Model Avg Carpet Grid Leather Tile Wood Bottle Cable Capsule Hazelnut Metal Nut Pill Screw Toothbrush Transistor Zipper
PatchCore Wide ResNet-50 0.980 0.988 0.968 0.991 0.961 0.934 0.984 0.988 0.988 0.987 0.989 0.980 0.989 0.988 0.981 0.983
PatchCore ResNet-18 0.976 0.986 0.955 0.990 0.943 0.933 0.981 0.984 0.986 0.986 0.986 0.974 0.991 0.988 0.974 0.983
CFlow Wide ResNet-50 0.971 0.986 0.968 0.993 0.968 0.924 0.981 0.955 0.988 0.990 0.982 0.983 0.979 0.985 0.897 0.980
PaDiM Wide ResNet-50 0.979 0.991 0.970 0.993 0.955 0.957 0.985 0.970 0.988 0.985 0.982 0.966 0.988 0.991 0.976 0.986
PaDiM ResNet-18 0.968 0.984 0.918 0.994 0.934 0.947 0.983 0.965 0.984 0.978 0.970 0.957 0.978 0.988 0.968 0.979
STFPM Wide ResNet-50 0.903 0.987 0.989 0.980 0.966 0.956 0.966 0.913 0.956 0.974 0.961 0.946 0.988 0.178 0.807 0.980
STFPM ResNet-18 0.951 0.986 0.988 0.991 0.946 0.949 0.971 0.898 0.962 0.981 0.942 0.878 0.983 0.983 0.838 0.972

Image F1 Score

Model Avg Carpet Grid Leather Tile Wood Bottle Cable Capsule Hazelnut Metal Nut Pill Screw Toothbrush Transistor Zipper
PatchCore Wide ResNet-50 0.976 0.971 0.974 1.000 1.000 0.967 1.000 0.968 0.982 1.000 0.984 0.940 0.943 0.938 1.000 0.979
PatchCore ResNet-18 0.970 0.949 0.946 1.000 0.98 0.992 1.000 0.978 0.969 1.000 0.989 0.940 0.932 0.935 0.974 0.967
CFlow Wide ResNet-50 0.944 0.972 0.932 1.0 0.988 0.967 1.0 0.832 0.939 1.0 0.979 0.924 0.971 0.870 0.818 0.967
PaDiM Wide ResNet-50 0.951 0.989 0.930 1.0 0.960 0.983 0.992 0.856 0.982 0.937 0.978 0.946 0.895 0.952 0.914 0.947
PaDiM ResNet-18 0.916 0.930 0.893 0.984 0.934 0.952 0.976 0.858 0.960 0.836 0.974 0.932 0.879 0.923 0.796 0.915
STFPM Wide ResNet-50 0.926 0.973 0.973 0.974 0.965 0.929 0.976 0.853 0.920 0.972 0.974 0.922 0.884 0.833 0.815 0.931
STFPM ResNet-18 0.932 0.961 0.982 0.989 0.930 0.951 0.984 0.819 0.918 0.993 0.973 0.918 0.887 0.984 0.790 0.908
DFM Wide ResNet-50 0.918 0.960 0.844 0.990 0.970 0.959 0.976 0.848 0.944 0.913 0.912 0.919 0.859 0.893 0.815 0.961
DFM ResNet-18 0.919 0.895 0.844 0.926 0.971 0.948 0.977 0.874 0.935 0.957 0.958 0.921 0.874 0.933 0.833 0.943
DFKDE Wide ResNet-50 0.875 0.907 0.844 0.905 0.945 0.914 0.946 0.790 0.914 0.817 0.894 0.922 0.855 0.845 0.722 0.910
DFKDE ResNet-18 0.872 0.864 0.844 0.854 0.960 0.898 0.942 0.793 0.908 0.827 0.894 0.916 0.859 0.853 0.756 0.916
GANomaly 0.834 0.864 0.844 0.852 0.836 0.863 0.863 0.760 0.905 0.777 0.894 0.916 0.853 0.833 0.571 0.881

Reference

If you use this library and love it, use this to cite it 🤗

@misc{anomalib,
      title={Anomalib: A Deep Learning Library for Anomaly Detection},
      author={Samet Akcay and
              Dick Ameln and
              Ashwin Vaidya and
              Barath Lakshmanan and
              Nilesh Ahuja and
              Utku Genc},
      year={2022},
      eprint={2202.08341},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].