All Projects → hezhangsprinter → Dcpdn

hezhangsprinter / Dcpdn

Densely Connected Pyramid Dehazing Network (CVPR'2018)

Programming Languages

python
139335 projects - #7 most used programming language

Projects that are alternatives of or similar to Dcpdn

Segan
A PyTorch implementation of SEGAN based on INTERSPEECH 2017 paper "SEGAN: Speech Enhancement Generative Adversarial Network"
Stars: ✭ 82 (-74.45%)
Mutual labels:  cnn, gan
Keraspp
코딩셰프의 3분 딥러닝, 케라스맛
Stars: ✭ 178 (-44.55%)
Mutual labels:  cnn, gan
Visual Feature Attribution Using Wasserstein Gans Pytorch
Implementation of Visual Feature Attribution using Wasserstein GANs (VAGANs, https://arxiv.org/abs/1711.08998) in PyTorch
Stars: ✭ 88 (-72.59%)
Mutual labels:  cnn, gan
Deeplearning
深度学习入门教程, 优秀文章, Deep Learning Tutorial
Stars: ✭ 6,783 (+2013.08%)
Mutual labels:  cnn, gan
Srgan
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
Stars: ✭ 2,641 (+722.74%)
Mutual labels:  cnn, gan
Deblurgan Tf
Unofficial tensorflow (tf) implementation of DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks
Stars: ✭ 60 (-81.31%)
Mutual labels:  cnn, gan
Tensorflow Tutorials
텐서플로우를 기초부터 응용까지 단계별로 연습할 수 있는 소스 코드를 제공합니다
Stars: ✭ 2,096 (+552.96%)
Mutual labels:  cnn, gan
Basicocr
BasicOCR是一个致力于解决自然场景文字识别算法研究的项目。该项目由长城数字大数据应用技术研究院佟派AI团队发起和维护。
Stars: ✭ 336 (+4.67%)
Mutual labels:  cnn, gan
Iseebetter
iSeeBetter: Spatio-Temporal Video Super Resolution using Recurrent-Generative Back-Projection Networks | Python3 | PyTorch | GANs | CNNs | ResNets | RNNs | Published in Springer Journal of Computational Visual Media, September 2020, Tsinghua University Press
Stars: ✭ 202 (-37.07%)
Mutual labels:  cnn, gan
Cyclegan Music Style Transfer
Symbolic Music Genre Transfer with CycleGAN
Stars: ✭ 201 (-37.38%)
Mutual labels:  cnn, gan
Liteflownet
LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation, CVPR 2018 (Spotlight paper, 6.6%)
Stars: ✭ 474 (+47.66%)
Mutual labels:  cnn, cvpr2018
DLSS
Deep Learning Super Sampling with Deep Convolutional Generative Adversarial Networks.
Stars: ✭ 88 (-72.59%)
Mutual labels:  cnn, gan
Tensorflow Tutorial
Tensorflow tutorial from basic to hard, 莫烦Python 中文AI教学
Stars: ✭ 4,122 (+1184.11%)
Mutual labels:  cnn, gan
Pytorch Srgan
A modern PyTorch implementation of SRGAN
Stars: ✭ 289 (-9.97%)
Mutual labels:  cnn, gan
Time Series Prediction
A collection of time series prediction methods: rnn, seq2seq, cnn, wavenet, transformer, unet, n-beats, gan, kalman-filter
Stars: ✭ 351 (+9.35%)
Mutual labels:  cnn, gan
Anime Face Gan Keras
A DCGAN to generate anime faces using custom mined dataset
Stars: ✭ 161 (-49.84%)
Mutual labels:  cnn, gan
Attentive Gan Derainnet
Unofficial tensorflow implemention of "Attentive Generative Adversarial Network for Raindrop Removal from A Single Image (CVPR 2018) " model https://maybeshewill-cv.github.io/attentive-gan-derainnet/
Stars: ✭ 184 (-42.68%)
Mutual labels:  gan, cvpr2018
Did Mdn
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)
Stars: ✭ 192 (-40.19%)
Mutual labels:  cnn, cvpr2018
Dfl Cnn
This is a pytorch re-implementation of Learning a Discriminative Filter Bank Within a CNN for Fine-Grained Recognition
Stars: ✭ 245 (-23.68%)
Mutual labels:  cnn, cvpr2018
Mydeeplearning
A deep learning library to provide algs in pure Numpy or Tensorflow.
Stars: ✭ 281 (-12.46%)
Mutual labels:  cnn, gan

DCPDN

Densely Connected Pyramid Dehazing Network (CVPR'2018)

He Zhang, Vishal M. Patel

[Paper Link] (CVPR'18)

We propose a new end-to-end single image dehazing method, called Densely Connected Pyramid Dehazing Network (DCPDN), which can jointly learn the transmission map, atmospheric light and dehazing all together. The end-to-end learning is achieved by directly embedding the atmospheric scattering model into the network, thereby ensuring that the proposed method strictly follows the physics-driven scattering model for dehazing. Inspired by the dense network that can maximize the information flow along features from different levels, we propose a new edge-preserving densely connected encoder-decoder structure with multi-level pyramid pooling module for estimating the transmission map. This network is optimized using a newly introduced edge-preserving loss function. To further incorporate the mutual structural information between the estimated transmission map and the dehazed result, we propose a joint-discriminator based on generative adversarial network framework to decide whether the corresponding dehazed image and the estimated transmission map are real or fake. An ablation study is conducted to demonstrate the effectiveness of each module evaluated at both estimated transmission map and dehazed result. Extensive experiments demonstrate that the proposed method achieves significant improvements over the state-of-the-art methods.

@inproceedings{dehaze_zhang_2018,		
  title={Densely Connected Pyramid Dehazing Network},
  author={Zhang, He and Patel, Vishal M},
  booktitle={CVPR},
  year={2018}
} 

Prerequisites:

  1. Linux
  2. Python 2 or 3
  3. CPU or NVIDIA GPU + CUDA CuDNN (CUDA 8.0)

Installation:

  1. Install PyTorch and dependencies from http://pytorch.org (Ubuntu+Python2.7) (conda install pytorch torchvision -c pytorch) Install pytorch 0.3.1 https://pytorch.org/previous-versions/

  2. Install Torch vision from the source.

    git clone https://github.com/pytorch/vision

    cd vision

    python setup.py install

  3. Install python package: numpy, scipy, PIL, pdb

Demo using pre-trained model

python demo.py --dataroot ./facades/nat_new4 --valDataroot ./facades/nat_new4 --netG ./demo_model/netG_epoch_8.pth   

Pre-trained dehazing model can be downloaded at (put it in the folder 'demo_model'): https://drive.google.com/drive/folders/1BmNP5ZUWEFeGGEL1NsZSRbYPyjBQ7-nn?usp=sharing

Testing images (nature) can be downloaded at (put it in the folder 'facades'): https://drive.google.com/drive/folders/1q5bRQGgS8SFEGqMwrLlku4Ad-0Tn3va7?usp=sharing

Testing images (syn (Test A in the paper)) can be downloaded at (put it in the folder 'facades'): https://drive.google.com/drive/folders/1hbwYCzoI3R3o2Gj_kfT6GHG7RmYEOA-P?usp=sharing

Training (Fine-tuning)

python train.py --dataroot ./facades/train512 --valDataroot ./facades/test512 --exp ./checkpoints_new --netG ./demo_model/netG_epoch_8.pth

More training details (especially how to repreduce the results using stage-wise training strategy) can be found in the paper.

Testing

python demo.py --dataroot ./your_dataroot --valDataroot ./your_dataroot --netG ./pre_trained/netG_epoch_9.pth   

Reproduce

To reproduce the quantitative results shown in the paper, please save both generated and target using python demo.py into the .png format and then test using offline tool such as the PNSR and SSIM measurement in Python or Matlab. In addition, please use netG.train() for testing since the batch for training is 1.

Dataset

Training images (syn) can be downloaded at (put it in the folder 'facades'): https://drive.google.com/drive/folders/1Qv7SIZBVAtb9G1d6iVKu_8rVSsXJdv26?usp=sharing

All the syn samples (both training and testing) are strored in Hdf5 file. You can also generate your sample using 'create_train.py' (Please download the NYU-depth @ http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat)

Following are the sample python codes how to read the Hdf5 file:

file_name=self.root+'/'+str(index)+'.h5'
f=h5py.File(file_name,'r')

haze_image=f['haze'][:]
gt_trans_map=f['trans'][:]
gt_ato_map=f['ato'][:]
GT=f['gt'][:]

Testing images (nature) can be downloaded at (put it in the folder 'facades'): https://drive.google.com/drive/folders/1q5bRQGgS8SFEGqMwrLlku4Ad-0Tn3va7?usp=sharing

Testing images (syn (Test A in the paper)) can be downloaded at (put it in the folder 'facades'): https://drive.google.com/drive/folders/1hbwYCzoI3R3o2Gj_kfT6GHG7RmYEOA-P?usp=sharing

How to creat your own testing samples

Since the proposed methods using hdf5 file to load the training samples, the generate_testsample.py help you to creat the testing or training sample yourself.

Extension

The proposed transmission net has demonstrated it effectiveness in multiple appplcaitions such as segmentation. crowd counting, face reconstruction from sparse sample and image synthesis.

It has also been asked by other researchers and used for participating the NTIRE-2018 dehazing challenge and the proposed netowrk has demonstrated effectivenss from the performance in leaderboard.

Acknowledgments

Great thanks for the insight discussion with Vishwanath Sindagi and initial discussion with Dr. Kevin S. Zhou

This work is under MIT license.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].