All Projects → orobix → Visual Feature Attribution Using Wasserstein Gans Pytorch

orobix / Visual Feature Attribution Using Wasserstein Gans Pytorch

Licence: mit
Implementation of Visual Feature Attribution using Wasserstein GANs (VAGANs, https://arxiv.org/abs/1711.08998) in PyTorch

Programming Languages

python
139335 projects - #7 most used programming language

Projects that are alternatives of or similar to Visual Feature Attribution Using Wasserstein Gans Pytorch

DLSS
Deep Learning Super Sampling with Deep Convolutional Generative Adversarial Networks.
Stars: ✭ 88 (+0%)
Mutual labels:  cnn, gan
Basicocr
BasicOCR是一个致力于解决自然场景文字识别算法研究的项目。该项目由长城数字大数据应用技术研究院佟派AI团队发起和维护。
Stars: ✭ 336 (+281.82%)
Mutual labels:  cnn, gan
Mydeeplearning
A deep learning library to provide algs in pure Numpy or Tensorflow.
Stars: ✭ 281 (+219.32%)
Mutual labels:  cnn, gan
Iseebetter
iSeeBetter: Spatio-Temporal Video Super Resolution using Recurrent-Generative Back-Projection Networks | Python3 | PyTorch | GANs | CNNs | ResNets | RNNs | Published in Springer Journal of Computational Visual Media, September 2020, Tsinghua University Press
Stars: ✭ 202 (+129.55%)
Mutual labels:  cnn, gan
Ganomaly
GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training
Stars: ✭ 563 (+539.77%)
Mutual labels:  gan, anomaly-detection
Srgan
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
Stars: ✭ 2,641 (+2901.14%)
Mutual labels:  cnn, gan
Dcpdn
Densely Connected Pyramid Dehazing Network (CVPR'2018)
Stars: ✭ 321 (+264.77%)
Mutual labels:  cnn, gan
Anime Face Gan Keras
A DCGAN to generate anime faces using custom mined dataset
Stars: ✭ 161 (+82.95%)
Mutual labels:  cnn, gan
Deeplearning
深度学习入门教程, 优秀文章, Deep Learning Tutorial
Stars: ✭ 6,783 (+7607.95%)
Mutual labels:  cnn, gan
Tensorflow Tutorial
Tensorflow tutorial from basic to hard, 莫烦Python 中文AI教学
Stars: ✭ 4,122 (+4584.09%)
Mutual labels:  cnn, gan
Cyclegan Music Style Transfer
Symbolic Music Genre Transfer with CycleGAN
Stars: ✭ 201 (+128.41%)
Mutual labels:  cnn, gan
Deblurgan Tf
Unofficial tensorflow (tf) implementation of DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks
Stars: ✭ 60 (-31.82%)
Mutual labels:  cnn, gan
Keraspp
코딩셰프의 3분 딥러닝, 케라스맛
Stars: ✭ 178 (+102.27%)
Mutual labels:  cnn, gan
Unsupervised-Anomaly-Detection-with-Generative-Adversarial-Networks
Unsupervised Anomaly Detection with Generative Adversarial Networks on MIAS dataset
Stars: ✭ 95 (+7.95%)
Mutual labels:  gan, anomaly-detection
Tensorflow Tutorials
텐서플로우를 기초부터 응용까지 단계별로 연습할 수 있는 소스 코드를 제공합니다
Stars: ✭ 2,096 (+2281.82%)
Mutual labels:  cnn, gan
Pytorch Srgan
A modern PyTorch implementation of SRGAN
Stars: ✭ 289 (+228.41%)
Mutual labels:  cnn, gan
Anogan Tf
Unofficial Tensorflow Implementation of AnoGAN (Anomaly GAN)
Stars: ✭ 218 (+147.73%)
Mutual labels:  gan, anomaly-detection
Keras Oneclassanomalydetection
[5 FPS - 150 FPS] Learning Deep Features for One-Class Classification (AnomalyDetection). Corresponds RaspberryPi3. Convert to Tensorflow, ONNX, Caffe, PyTorch. Implementation by Python + OpenVINO/Tensorflow Lite.
Stars: ✭ 102 (+15.91%)
Mutual labels:  cnn, anomaly-detection
Time Series Prediction
A collection of time series prediction methods: rnn, seq2seq, cnn, wavenet, transformer, unet, n-beats, gan, kalman-filter
Stars: ✭ 351 (+298.86%)
Mutual labels:  cnn, gan
Ad examples
A collection of anomaly detection methods (iid/point-based, graph and time series) including active learning for anomaly detection/discovery, bayesian rule-mining, description for diversity/explanation/interpretability. Analysis of incorporating label feedback with ensemble and tree-based detectors. Includes adversarial attacks with Graph Convolutional Network.
Stars: ✭ 641 (+628.41%)
Mutual labels:  gan, anomaly-detection

PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

This code aims to reproduce results obtained in the paper "Visual Feature Attribution using Wasserstein GANs" (official repo, TensorFlow code)

Description

This repository contains the code to reproduce results for the paper cited above, where the authors presents a novel feature attribution technique based on Wasserstein Generative Adversarial Networks (WGAN). The code works for both synthetic (2D) and real 3D neuroimaging data, you can check below for a brief description of the two datasets.

anomaly maps examples

Here is an example of what the generator/mapper network should produce: ctrl-click on the below image to open the gifv in a new tab (one frame every 50 iterations, left: input, right: anomaly map for synthetic data at iteration 50 * (its + 1)).

anomaly maps examples

Synthetic Dataset

"Data: In order to quantitatively evaluate the performance of the examined visual attribution methods, we generated a synthetic dataset of 10000 112x112 images with two classes, which model a healthy control group (label 0) and a patient group (label 1). The images were split evenly across the two categories. We closely followed the synthetic data generation process described in [31][SubCMap: Subject and Condition Specific Effect Maps] where disease effects were studied in smaller cohorts of registered images. The control group (label 0) contained images with ran- dom iid Gaussian noise convolved with a Gaussian blurring filter. Examples are shown in Fig. 3. The patient images (label 1) also contained the noise, but additionally exhib- ited one of two disease effects which was generated from a ground-truth effect map: a square in the centre and a square in the lower right (subtype A), or a square in the centre and a square in the upper left (subtype B). Importantly, both dis- ease subtypes shared the same label. The location of the off-centre squares was randomly offset in each direction by a maximum of 5 pixels. This moving effect was added to make the problem harder, but had no notable effect on the outcome."

image

ADNI Dataset

Currently we only implemented training on synthetic dataset, we will work on implement training on ADNI dataset asap (but pull requests are welcome as always), we put below ADNI dataset details for sake of completeness.

"We selected 5778 3D T1-weighted MR images from 1288 subjects with either an MCI (label 0) or AD (label 1) diagnosis from the ADNI cohort. 2839 of the images were acquired using a 1.5T magnet, the remainder using a 3T magnet. The subjects are scanned at regular intervals as part of the ADNI study and a number of subjects converted from MCI to AD over the years. We did not use these cor- respondences for training, however, we took advantage of it for evaluation as will be described later. All images were processed using standard operations available in the FSL toolbox [52][Advances in functional and structural MR image analysis and implementation as FSL.] in order to reorient and rigidly register the images to MNI space, crop them and correct for field inhomogeneities. We then skull-stripped the images using the ROBEX algorithm [24][Robust brain extraction across datasets and comparison with publicly available methods]. Lastly, we resampled all images to a resolution of 1.3 mm 3 and nor- malised them to a range from -1 to 1. The final volumes had a size of 128x160x112 voxels."

"Data used in preparation of this article were obtained from the Alzheimers disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf"

Usage

Training

To train the WGAN on this task, cd into this repo's src root folder and execute:

$ python train.py

This script takes the following command line options:

  • dataset_root: the root directory where tha dataset is stored, default to '../dataset'

  • experiment: directory in where samples and models will be saved, default to '../samples'

  • batch_size: input batch size, default to 32

  • image_size: the height / width of the input image to network, default to 112

  • channels_number: input image channels, default to 1

  • num_filters_g: number of filters for the first layer of the generator, default to 16

  • num_filters_d: number of filters for the first layer of the discriminator, default to 16

  • nepochs: number of epochs to train for, default to 1000

  • d_iters: number of discriminator iterations per each generator iter, default to 5

  • learning_rate_g: learning rate for generator, default to 1e-3

  • learning_rate_d: learning rate for discriminator, default to 1e-3

  • beta1: beta1 for adam. default to 0.0

  • cuda: enables cuda (store True)

  • manual_seed: input for the manual seeds initializations, default to 7

Running the command without arguments will train the models with the default hyperparamters values (producing results shown above).

Models

We ported all models found in the original repository in PyTorch, you can find all implemented models here: https://github.com/orobix/Visual-Feature-Attribution-Using-Wasserstein-GANs-Pytorch/tree/master/src/models

Useful repositories and code

  • vagan-code: Reposiory for the reference paper from its authors

  • ganhacks: Starter from "How to Train a GAN?" at NIPS2016

  • WassersteinGAN: Code accompanying the paper "Wasserstein GAN"

  • wgan-gp: Pytorch implementation of Paper "Improved Training of Wasserstein GANs".

  • c3d-pytorch: Model used as discriminator in the reference paper

  • Pytorch-UNet: Model used as genertator in this repository

  • dcgan: Model used as discriminator in this repository

.bib citation

cite the paper as follows (copied-pasted it from arxiv for you):

@article{DBLP:journals/corr/abs-1711-08998,
  author    = {Christian F. Baumgartner and
               Lisa M. Koch and
               Kerem Can Tezcan and
               Jia Xi Ang and
               Ender Konukoglu},
  title     = {Visual Feature Attribution using Wasserstein GANs},
  journal   = {CoRR},
  volume    = {abs/1711.08998},
  year      = {2017},
  url       = {http://arxiv.org/abs/1711.08998},
  archivePrefix = {arXiv},
  eprint    = {1711.08998},
  timestamp = {Sun, 03 Dec 2017 12:38:15 +0100},
  biburl    = {http://dblp.org/rec/bib/journals/corr/abs-1711-08998},
  bibsource = {dblp computer science bibliography, http://dblp.org}
}

License

This project is licensed under the MIT License

Copyright (c) 2018 Daniele E. Ciriello, Orobix Srl (www.orobix.com).

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].