All Projects → udacity → Deep Learning V2 Pytorch

udacity / Deep Learning V2 Pytorch

Licence: mit
Projects and exercises for the latest Deep Learning ND program https://www.udacity.com/course/deep-learning-nanodegree--nd101

Programming Languages

Jupyter Notebook
11667 projects
python
139335 projects - #7 most used programming language

Projects that are alternatives of or similar to Deep Learning V2 Pytorch

Malaya
Natural Language Toolkit for bahasa Malaysia, https://malaya.readthedocs.io/
Stars: ✭ 239 (-94.64%)
Mutual labels:  jupyter-notebook, sentiment-analysis
Introduction Datascience Python Book
Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications
Stars: ✭ 275 (-93.83%)
Mutual labels:  jupyter-notebook, sentiment-analysis
Pytorch Sentiment Analysis
Tutorials on getting started with PyTorch and TorchText for sentiment analysis.
Stars: ✭ 3,209 (-28%)
Mutual labels:  jupyter-notebook, sentiment-analysis
Weibospider sentimentanalysis
借助Python抓取微博数据,并对抓取的数据进行情绪分析
Stars: ✭ 173 (-96.12%)
Mutual labels:  jupyter-notebook, sentiment-analysis
Thesemicolon
This repository contains Ipython notebooks and datasets for the data analytics youtube tutorials on The Semicolon.
Stars: ✭ 345 (-92.26%)
Mutual labels:  jupyter-notebook, sentiment-analysis
Style transfer
CNN image style transfer 🎨.
Stars: ✭ 210 (-95.29%)
Mutual labels:  jupyter-notebook, style-transfer
Pytorch Image Classification
Tutorials on how to implement a few key architectures for image classification using PyTorch and TorchVision.
Stars: ✭ 272 (-93.9%)
Mutual labels:  jupyter-notebook, convolutional-networks
Amazon Product Recommender System
Sentiment analysis on Amazon Review Dataset available at http://snap.stanford.edu/data/web-Amazon.html
Stars: ✭ 158 (-96.46%)
Mutual labels:  jupyter-notebook, sentiment-analysis
Darts
Differentiable architecture search for convolutional and recurrent networks
Stars: ✭ 3,463 (-22.3%)
Mutual labels:  convolutional-networks, recurrent-networks
Shapematchinggan
[ICCV 2019, Oral] Controllable Artistic Text Style Transfer via Shape-Matching GAN
Stars: ✭ 315 (-92.93%)
Mutual labels:  jupyter-notebook, style-transfer
Sentimentanalysis
文本情感分析
Stars: ✭ 421 (-90.55%)
Mutual labels:  jupyter-notebook, sentiment-analysis
Easy Deep Learning With Keras
Keras tutorial for beginners (using TF backend)
Stars: ✭ 367 (-91.77%)
Mutual labels:  jupyter-notebook, convolutional-networks
Dst
Deformable Style Transfer (ECCV 2020)
Stars: ✭ 167 (-96.25%)
Mutual labels:  jupyter-notebook, style-transfer
Tutorials
AI-related tutorials. Access any of them for free → https://towardsai.net/editorial
Stars: ✭ 204 (-95.42%)
Mutual labels:  jupyter-notebook, sentiment-analysis
Hey Jetson
Deep Learning based Automatic Speech Recognition with attention for the Nvidia Jetson.
Stars: ✭ 161 (-96.39%)
Mutual labels:  jupyter-notebook, sentiment-analysis
Stock Analysis
Regression, Scrapers, and Visualization
Stars: ✭ 255 (-94.28%)
Mutual labels:  jupyter-notebook, sentiment-analysis
Deep Learning Specialization Coursera
Deep Learning Specialization courses by Andrew Ng, deeplearning.ai
Stars: ✭ 146 (-96.72%)
Mutual labels:  jupyter-notebook, convolutional-networks
Cartoonify
Deploy and scale serverless machine learning app - in 4 steps.
Stars: ✭ 157 (-96.48%)
Mutual labels:  jupyter-notebook, style-transfer
Zhihu
This repo contains the source code in my personal column (https://zhuanlan.zhihu.com/zhaoyeyu), implemented using Python 3.6. Including Natural Language Processing and Computer Vision projects, such as text generation, machine translation, deep convolution GAN and other actual combat code.
Stars: ✭ 3,307 (-25.8%)
Mutual labels:  jupyter-notebook, style-transfer
Afinn
AFINN sentiment analysis in Python
Stars: ✭ 356 (-92.01%)
Mutual labels:  jupyter-notebook, sentiment-analysis

Deep Learning (PyTorch) - ND101 v7

This repository contains material related to Udacity's Deep Learning v7 Nanodegree program. It consists of a bunch of tutorial notebooks for various deep learning topics. In most cases, the notebooks lead you through implementing models such as convolutional networks, recurrent networks, and GANs. There are other topics covered such as weight initialization and batch normalization.

There are also notebooks used as projects for the Nanodegree program. In the program itself, the projects are reviewed by real people (Udacity reviewers), but the starting code is available here, as well.

Table Of Contents

Tutorials

Introduction to Neural Networks

Convolutional Neural Networks

  • Convolutional Neural Networks: Visualize the output of layers that make up a CNN. Learn how to define and train a CNN for classifying MNIST data, a handwritten digit database that is notorious in the fields of machine and deep learning. Also, define and train a CNN for classifying images in the CIFAR10 dataset.
  • Transfer Learning. In practice, most people don't train their own networks on huge datasets; they use pre-trained networks such as VGGnet. Here you'll use VGGnet to help classify images of flowers without training an end-to-end network from scratch.
  • Weight Initialization: Explore how initializing network weights affects performance.
  • Autoencoders: Build models for image compression and de-noising, using feedforward and convolutional networks in PyTorch.
  • Style Transfer: Extract style and content features from images, using a pre-trained network. Implement style transfer according to the paper, Image Style Transfer Using Convolutional Neural Networks by Gatys et. al. Define appropriate losses for iteratively creating a target, style-transferred image of your own design!

Recurrent Neural Networks

  • Intro to Recurrent Networks (Time series & Character-level RNN): Recurrent neural networks are able to use information about the sequence of data, such as the sequence of characters in text; learn how to implement these in PyTorch for a variety of tasks.
  • Embeddings (Word2Vec): Implement the Word2Vec model to find semantic representations of words for use in natural language processing.
  • Sentiment Analysis RNN: Implement a recurrent neural network that can predict if the text of a moview review is positive or negative.
  • Attention: Implement attention and apply it to annotation vectors.

Generative Adversarial Networks

  • Generative Adversarial Network on MNIST: Train a simple generative adversarial network on the MNIST dataset.
  • Batch Normalization: Learn how to improve training rates and network stability with batch normalizations.
  • Deep Convolutional GAN (DCGAN): Implement a DCGAN to generate new images based on the Street View House Numbers (SVHN) dataset.
  • CycleGAN: Implement a CycleGAN that is designed to learn from unpaired and unlabeled data; use trained generators to transform images from summer to winter and vice versa.

Deploying a Model (with AWS SageMaker)

Projects

  • Predicting Bike-Sharing Patterns: Implement a neural network in NumPy to predict bike rentals.
  • Dog Breed Classifier: Build a convolutional neural network with PyTorch to classify any image (even an image of a face) as a specific dog breed.
  • TV Script Generation: Train a recurrent neural network to generate scripts in the style of dialogue from Seinfeld.
  • Face Generation: Use a DCGAN on the CelebA dataset to generate images of new and realistic human faces.

Elective Material

  • Intro to TensorFlow: Starting building neural networks with TensorFlow.
  • Keras: Learn to build neural networks and convolutional neural networks with Keras.

Dependencies

Configure and Manage Your Environment with Anaconda

Per the Anaconda docs:

Conda is an open source package management system and environment management system for installing multiple versions of software packages and their dependencies and switching easily between them. It works on Linux, OS X and Windows, and was created for Python programs but can package and distribute any software.

Overview

Using Anaconda consists of the following:

  1. Install miniconda on your computer, by selecting the latest Python version for your operating system. If you already have conda or miniconda installed, you should be able to skip this step and move on to step 2.
  2. Create and activate * a new conda environment.

* Each time you wish to work on any exercises, activate your conda environment!


1. Installation

Download the latest version of miniconda that matches your system.

Linux Mac Windows
64-bit 64-bit (bash installer) 64-bit (bash installer) 64-bit (exe installer)
32-bit 32-bit (bash installer) 32-bit (exe installer)

Install miniconda on your machine. Detailed instructions:

2. Create and Activate the Environment

For Windows users, these following commands need to be executed from the Anaconda prompt as opposed to a Windows terminal window. For Mac, a normal terminal window will work.

Git and version control

These instructions also assume you have git installed for working with Github from a terminal window, but if you do not, you can download that first with the command:

conda install git

If you'd like to learn more about version control and using git from the command line, take a look at our free course: Version Control with Git.

Now, we're ready to create our local environment!

  1. Clone the repository, and navigate to the downloaded folder. This may take a minute or two to clone due to the included image data.
git clone https://github.com/udacity/deep-learning-v2-pytorch.git
cd deep-learning-v2-pytorch
  1. Create (and activate) a new environment, named deep-learning with Python 3.6. If prompted to proceed with the install (Proceed [y]/n) type y.

    • Linux or Mac:
    conda create -n deep-learning python=3.6
    source activate deep-learning
    
    • Windows:
    conda create --name deep-learning python=3.6
    activate deep-learning
    

    At this point your command line should look something like: (deep-learning) <User>:deep-learning-v2-pytorch <user>$. The (deep-learning) indicates that your environment has been activated, and you can proceed with further package installations.

  2. Install PyTorch and torchvision; this should install the latest version of PyTorch.

    • Linux or Mac:
    conda install pytorch torchvision -c pytorch 
    
    • Windows:
    conda install pytorch -c pytorch
    pip install torchvision
    
  3. Install a few required pip packages, which are specified in the requirements text file (including OpenCV).

pip install -r requirements.txt
  1. That's it!

Now most of the deep-learning libraries are available to you. Very occasionally, you will see a repository with an addition requirements file, which exists should you want to use TensorFlow and Keras, for example. In this case, you're encouraged to install another library to your existing environment, or create a new environment for a specific project.

Now, assuming your deep-learning environment is still activated, you can navigate to the main repo and start looking at the notebooks:

cd
cd deep-learning-v2-pytorch
jupyter notebook

To exit the environment when you have completed your work session, simply close the terminal window.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].