All Projects → SkalskiP → Ilearndeeplearning.py

SkalskiP / Ilearndeeplearning.py

Licence: mit
This repository contains small projects related to Neural Networks and Deep Learning in general. Subjects are closely linekd with articles I publish on Medium. I encourage you both to read as well as to check how the code works in the action.

Projects that are alternatives of or similar to Ilearndeeplearning.py

Pytorch Tutorials Examples And Books
PyTorch1.x tutorials, examples and some books I found 【不定期更新】整理的PyTorch 1.x 最新版教程、例子和书籍
Stars: ✭ 346 (-61.38%)
Mutual labels:  jupyter-notebook, deep-learning-tutorial, numpy
Deep learning nlp
Keras, PyTorch, and NumPy Implementations of Deep Learning Architectures for NLP
Stars: ✭ 407 (-54.58%)
Mutual labels:  jupyter-notebook, numpy
Trainyourownyolo
Train a state-of-the-art yolov3 object detector from scratch!
Stars: ✭ 399 (-55.47%)
Mutual labels:  jupyter-notebook, deep-learning-tutorial
Dsp Theory
Theory of digital signal processing (DSP): signals, filtration (IIR, FIR, CIC, MAF), transforms (FFT, DFT, Hilbert, Z-transform) etc.
Stars: ✭ 437 (-51.23%)
Mutual labels:  jupyter-notebook, numpy
Python Notlarim
Python notes in Turkish.
Stars: ✭ 356 (-60.27%)
Mutual labels:  jupyter-notebook, numpy
Stats Maths With Python
General statistics, mathematical programming, and numerical/scientific computing scripts and notebooks in Python
Stars: ✭ 381 (-57.48%)
Mutual labels:  jupyter-notebook, numpy
Matrex
A blazing fast matrix library for Elixir/Erlang with C implementation using CBLAS.
Stars: ✭ 429 (-52.12%)
Mutual labels:  jupyter-notebook, numpy
Gdrl
Grokking Deep Reinforcement Learning
Stars: ✭ 304 (-66.07%)
Mutual labels:  jupyter-notebook, numpy
Deep Learning With Pytorch Chinese
本仓库将PyTorch官方书籍《Deep learning with PyTorch》(基本摘录版)翻译成中文版并给出可运行的相关代码。
Stars: ✭ 517 (-42.3%)
Mutual labels:  jupyter-notebook, deep-learning-tutorial
Tensor Sensor
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.
Stars: ✭ 532 (-40.62%)
Mutual labels:  jupyter-notebook, numpy
Stock Analysis Engine
Backtest 1000s of minute-by-minute trading algorithms for training AI with automated pricing data from: IEX, Tradier and FinViz. Datasets and trading performance automatically published to S3 for building AI training datasets for teaching DNNs how to trade. Runs on Kubernetes and docker-compose. >150 million trading history rows generated from +5000 algorithms. Heads up: Yahoo's Finance API was disabled on 2019-01-03 https://developer.yahoo.com/yql/
Stars: ✭ 605 (-32.48%)
Mutual labels:  jupyter-notebook, deep-learning-tutorial
Machine learning refined
Notes, examples, and Python demos for the textbook "Machine Learning Refined" (published by Cambridge University Press).
Stars: ✭ 750 (-16.29%)
Mutual labels:  jupyter-notebook, numpy
Thesemicolon
This repository contains Ipython notebooks and datasets for the data analytics youtube tutorials on The Semicolon.
Stars: ✭ 345 (-61.5%)
Mutual labels:  jupyter-notebook, numpy
Workshopscipy
A workshop for scientific computing in Python. ( December 2017 )
Stars: ✭ 391 (-56.36%)
Mutual labels:  jupyter-notebook, numpy
Numpy neural network
仅使用numpy从头开始实现神经网络,包括反向传播公式推导过程; numpy构建全连接层、卷积层、池化层、Flatten层;以及图像分类案例及精调网络案例等,持续更新中... ...
Stars: ✭ 339 (-62.17%)
Mutual labels:  jupyter-notebook, numpy
Pytablewriter
pytablewriter is a Python library to write a table in various formats: CSV / Elasticsearch / HTML / JavaScript / JSON / LaTeX / LDJSON / LTSV / Markdown / MediaWiki / NumPy / Excel / Pandas / Python / reStructuredText / SQLite / TOML / TSV.
Stars: ✭ 422 (-52.9%)
Mutual labels:  jupyter-notebook, numpy
Pysynth
Several simple music synthesizers in Python 3. Input from ABC or MIDI files is also supported.
Stars: ✭ 279 (-68.86%)
Mutual labels:  jupyter-notebook, numpy
Python
This repository helps you understand python from the scratch.
Stars: ✭ 285 (-68.19%)
Mutual labels:  jupyter-notebook, numpy
Practical Deep Learning Book
Official code repo for the O'Reilly Book - Practical Deep Learning for Cloud, Mobile & Edge
Stars: ✭ 441 (-50.78%)
Mutual labels:  jupyter-notebook, deep-learning-tutorial
Notes Python
中文 Python 笔记
Stars: ✭ 6,127 (+583.82%)
Mutual labels:  jupyter-notebook, numpy

ILearnDeepLearning.py

NumPy NN animation

Description

People say that nothing develops and teaches you like getting your hands dirty. This repository contains small projects mostly related to Deep Learning but also Data Science in general. Subjects are closely linekd with articles I publish on Medium and are intended to complement those blog posts. For me it is a way to document my learning process, but also to help others understand neural network related issues. I hope that the content of the repository will turn out to be interesting and, above all, useful. I encourage you both to read my posts as well as to check how the code works in the action.

Hit the ground running

# clone repository
git clone https://github.com/SkalskiP/ILearnDeepLearning.py.git

# navigate to main directory
cd ILearnDeepLearning.py

# set up and activate python environment
apt-get install python3-venv
python3 -m venv .env
source .env/bin/activate

# install all required packages
pip install -r requirements.txt

Deep Dive into Math Behind Deep Networks

Medium articule - Source code

This project is mainly focused on visualizing quite complex issues related to gradient descent, activation functions and visualization of classification boundaries while teaching the model. It is a code that complements the issues described in more detail in the article. Here are some of the visualizations that have been created.

Keras model frames Keras class boundries

Figure 1. A classification boundaries graph created in every iteration of the Keras model. Finally, the frames were combined to create an animation.

Gradient descent

Figure 2. Visualization of the gradient descent.

Let’s code a Neural Network in plain NumPy

Medium articule - Source code

After a theoretical introduction, the time has come for practical implementation of the neural network using NumPy. In this notebook you will find full source code and a comparison of the performance of the basic implementation with the model created with Keras. You can find a wider commentary to understand the order and meaning of performed functions in a related article.

NumPy NN animation

Figure 3. Visualisation of the classification boundaries achieved with simple NumPy model

Preventing Deep Neural Network from Overfitting

Medium articule - Source code

This time I focused on the analysis of the reasons for overfitting and ways to prevent it. I made simulations of neural network regulation for different lambda coefficients, analyzing the change of values in the weight matrix. Take a look at the visualizations that were created in the process.

Change of accuracy

Figure 4. Classification boundaries created by: top right corner - linear regression; bottom left corner - neural network; bottom right corner - neural network with regularisation

Change of accuracy

Figure 5. Change of accuracy values in subsequent epochs during neural network learning.

How to train Neural Network faster with optimizers?

Medium articule - Source code

As I worked on the last article, I had the opportunity to create my own neural network using only Numpy. It was a very challenging task, but at the same time it significantly broadened my understanding of the processes that take place inside the NN. Among others, this experience made me truly realize how many factors influence neural net's performance. Selected architecture,proper hyperparameter values or even correct initiation of parameters, are just some of those things... This time however, we will focus on the decision that has a huge impact on learning process speed, as well as the accuracy of obtained predictions - the choice of the optimization strategy.

Change of accuracy

Figure 6. Examples of points which are a problem for optimization algorithms.

Change of accuracy

Figure 7. Optimizers comparison.

Simple Method of Creating Animated Graphs

Medium articule - Source code

Both in my articles and projects I try to create interesting visualizations, which very often allow me to communicate my ideas much more effectively. I decided to create a short tutorial to show you how to easily create animated visualizations using Matplotlib. I also encourage you to read my post where I described, among other things, how to create a visualization of neural network learning process.

Change of accuracy

Figure 8. Lorenz Attractor created using the Matplotlib animation API.

Gentle Dive into Math Behind Convolutional Neural Networks

Medium articule - Source code

In this post on Medium I focused on the theoretical issues related to CNNs. It is a preparation for the upcoming mini project, which aims to create my own, simple implementation of this type of the Neural Network. As a result, this section of the repository is quite narrow and includes mainly simple visualizations of the effects of a convolution with a selected filter.

Convolution

Figure 9. Convolutionary effect with selected filters.

Chess, rolls or basketball? Let's create a custom object detection model

Medium articule - Source code

My posts on the Medium are usually very theoretical - I tend to analyse and describe the algorithms that define how Neural Networks work. This time, however, I decided to break this trend and show my readers how easy it is to train your own YOLO model, capable of detecting any objects we choose. In order to achieve this goal, we will need help from a very useful and easy-to-use implementation of YOLO. In short, not much coding, but a huge effect.

Convolution

Figure 10. Detection of players moving around the basketball court, based on YouTube-8M dataset.

Knowing What and Why? - Explaining Image Classifier Predictions

Medium articule - Source code

As we implement highly responsible Computer Vision systems, it is becoming progressively clear that we must provide not only predictions but also explanations, as to what influenced its decision. In this post, I compared and benchmarked the most commonly used libraries for explaining the model predictions in the field of Image Classification - Eli5, LIME, and SHAP. I investigated the algorithms that they leverage, as well as compared the efficiency and quality of the provided explanations.

Explaining predictions

Figure 11. Comparison of explanations provided by ELI5, LIME and SHAP

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Interesting materials and ideas

This is a place where I collect links to interesting articles and papers, which I hope will become the basis for my next projects in the future.

  1. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
  2. Sequence to Sequence Learning with Neural Networks
  3. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
  4. BLEU: a Method for Automatic Evaluation of Machine Translation
  5. Neural Machine Translation by Jointly Learning to Align and Translate
  6. A (Long) Peek into Reinforcement Learning
  7. Why Momentum Really Works
  8. Improving the way neural networks learn
  9. Classification and Loss Evaluation - Softmax and Cross Entropy Loss
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].