All Projects → consbio → Mbtileserver

consbio / Mbtileserver

Licence: isc
Basic Go server for mbtiles

Programming Languages

go
31211 projects - #10 most used programming language

Projects that are alternatives of or similar to Mbtileserver

Tegola
Tegola is a Mapbox Vector Tile server written in Go
Stars: ✭ 754 (+245.87%)
Mutual labels:  vector-tiles
Tileserver Gl
Vector and raster maps with GL styles. Server side rendering by Mapbox GL Native. Map tile server for Mapbox GL JS, Android, iOS, Leaflet, OpenLayers, GIS via WMTS, etc.
Stars: ✭ 1,210 (+455.05%)
Mutual labels:  vector-tiles
Mapbox Gl Native Android
Interactive, thoroughly customizable maps in native Android powered by vector tiles and OpenGL
Stars: ✭ 135 (-38.07%)
Mutual labels:  vector-tiles
Mapbox Gl Js
Interactive, thoroughly customizable maps in the browser, powered by vector tiles and WebGL
Stars: ✭ 8,017 (+3577.52%)
Mutual labels:  vector-tiles
Openmaptiles
OpenMapTiles Vector Tile Schema Implementation
Stars: ✭ 1,175 (+438.99%)
Mutual labels:  vector-tiles
Baremaps
Custom vector tiles from OpenStreetMap and other data sources.
Stars: ✭ 100 (-54.13%)
Mutual labels:  vector-tiles
Mapscii
🗺 MapSCII is a Braille & ASCII world map renderer for your console - enter => telnet mapscii.me <= on Mac (brew install telnet) and Linux, connect with PuTTY on Windows
Stars: ✭ 5,886 (+2600%)
Mutual labels:  vector-tiles
Tangram
WebGL map rendering engine for creative cartography
Stars: ✭ 1,964 (+800.92%)
Mutual labels:  vector-tiles
Maplibre Gl Native
An open-source fork of Mapbox GL SDK for iOS and Android and other platforms
Stars: ✭ 65 (-70.18%)
Mutual labels:  vector-tiles
Tiler
A no nonsense Vector Tile pipeline
Stars: ✭ 132 (-39.45%)
Mutual labels:  vector-tiles
Openstreetmap Cartographic
A port of OpenStreetMap Carto to Mapbox GL for client-side rendering
Stars: ✭ 50 (-77.06%)
Mutual labels:  vector-tiles
Editor
An open source visual editor for the 'Mapbox Style Specification'
Stars: ✭ 1,167 (+435.32%)
Mutual labels:  vector-tiles
Osmscout Server
Maps server providing tiles, geocoder, and router
Stars: ✭ 105 (-51.83%)
Mutual labels:  vector-tiles
Djangorestframework Mvt
Serve Mapbox Vector Tiles with Django and Postgres
Stars: ✭ 33 (-84.86%)
Mutual labels:  vector-tiles
Tippecanoe
Build vector tilesets from large collections of GeoJSON features.
Stars: ✭ 1,986 (+811.01%)
Mutual labels:  vector-tiles
Tangram Es
2D and 3D map renderer using OpenGL ES
Stars: ✭ 644 (+195.41%)
Mutual labels:  vector-tiles
Osm Analytics
OSM Analytics lets you interactively analyze how specific OpenStreetMap features are mapped in a specific region.
Stars: ✭ 87 (-60.09%)
Mutual labels:  vector-tiles
Ngx Leaflet Starter
A soup of Angular and Leaflet
Stars: ✭ 208 (-4.59%)
Mutual labels:  vector-tiles
Node Tileserver
A lightweight tileserver based on NodeJS for serving bitmap and vector tiles.
Stars: ✭ 148 (-32.11%)
Mutual labels:  vector-tiles
Tilehut
A modest, but cozy home for your map tiles
Stars: ✭ 132 (-39.45%)
Mutual labels:  vector-tiles

mbtileserver

A simple Go-based server for map tiles stored in mbtiles format.

Build Status Coverage Status GoDoc Go Report Card

It currently provides support for png, jpg, and pbf (vector tile) tilesets according to version 1.0 of the mbtiles specification. Tiles are served following the XYZ tile scheme, based on the Web Mercator coordinate reference system. UTF8 Grids are also supported.

In addition to tile-level access, it provides:

  • TileJSON 2.1.0 endpoint for each tileset, with full metadata from the mbtiles file.
  • a preview map for exploring each tileset.
  • a minimal ArcGIS tile map service API

We have been able to host a bunch of tilesets on an AWS t2.nano virtual machine without any issues.

Goals

  • Provide a web tile API for map tiles stored in mbtiles format
  • Be fast
  • Run on small resource cloud hosted machines (limited memory & CPU)
  • Be easy to install and operate

Supported Go versions

Requires Go 1.10+. Go 1.13 is recommended for full support.

mbtileserver uses go modules and follows standard practices as of Go 1.13.

Due to varying degrees of go module support between Go versions 1.10 and 1.13, we provide a vendor directory with dependencies for older versions. This is deprecated and will be removed in an upcoming version.

Note: Go versions 1.11.0 - 1.11.3 are not supported, use Go 1.11.4. This is due to differences in how those versions handled go modules (see).

Installation

You can install this project with

go get github.com/consbio/mbtileserver

This will create and install an executable called mbtileserver.

Usage

From within the repository root ($GOPATH/bin needs to be in your $PATH):

$  mbtileserver --help
Serve tiles from mbtiles files.

Usage:
  mbtileserver [flags]

Flags:
  -c, --cert string            X.509 TLS certificate filename.  If present, will be used to enable SSL on the server.
  -d, --dir string             Directory containing mbtiles files. Directory containing mbtiles files.  Can be a comma-delimited list of directories. (default "./tilesets")
      --disable-preview        Disable map preview for each tileset (enabled by default)
      --disable-svc-list       Disable services list endpoint (enabled by default)
      --disable-tilejson       Disable TileJSON endpoint for each tileset (enabled by default)
      --domain string          Domain name of this server.  NOTE: only used for AutoTLS.
      --dsn string             Sentry DSN
      --enable-arcgis          Enable ArcGIS Mapserver endpoints
      --enable-reload-signal   Enable graceful reload using HUP signal to the server process
      --generate-ids           Automatically generate tileset IDs instead of using relative path
  -h, --help                   help for mbtileserver
  -k, --key string             TLS private key
  -p, --port int               Server port. Default is 443 if --cert or --tls options are used, otherwise 8000. (default -1)
  -r, --redirect               Redirect HTTP to HTTPS
      --root-url string        Root URL of services endpoint (default "/services")
  -s, --secret-key string      Shared secret key used for HMAC request authentication
      --tiles-only             Only enable tile endpoints (shortcut for --disable-svc-list --disable-tilejson --disable-preview)
  -t, --tls                    Auto TLS via Let's Encrypt
  -v, --verbose                Verbose logging

So hosting tiles is as easy as putting your mbtiles files in the tilesets directory and starting the server. Woo hoo!

You can have multiple directories in your tilesets directory; these will be converted into appropriate URLs:

<tile_dir>/foo/bar/baz.mbtiles will be available at /services/foo/bar/baz.

If --generate-ids is provided, tileset IDs are automatically generated using a SHA1 hash of the path to each tileset. By default, tileset IDs are based on the relative path of each tileset to the base directory provided using --dir.

When you want to remove, modify, or add new tilesets, simply restart the server process or use the reloading process below.

If a valid Sentry DSN is provided, warnings, errors, fatal errors, and panics will be reported to Sentry.

If redirect option is provided, the server also listens on port 80 and redirects to port 443.

If the --tls option is provided, the Let's Encrypt Terms of Service are accepted automatically on your behalf. Please review them here. Certificates are cached in a .certs folder created where you are executing mbtileserver. Please make sure this folder can be written by the mbtileserver process or you will get errors. Certificates are not requested until the first request is made to the server. We recommend that you initialize these after startup by making a request against https://<hostname>/services and watching the logs from the server to make sure that certificates were processed correctly. Common errors include Let's Encrypt not being able to access your server at the domain you provided. localhost or internal-only domains will not work.

If either --cert or --tls are provided, the default port is 443.

You can also use environment variables instead of flags, which may be more helpful when deploying in a docker image. Use the associated flag to determine usage. The following variables are available:

  • PORT (--port)
  • TILE_DIR (--dir)
  • GENERATE_IDS (--generate-ids)
  • ROOT_URL_PATH (--root-url-path)
  • DOMAIN (--domain)
  • TLS_CERT (--cert)
  • TLS_PRIVATE_KEY (--key)
  • HMAC_SECRET_KEY (--secret-key)
  • AUTO_TLS (--tls)
  • REDIRECT (--redirect)
  • DSN (--dsn)
  • VERBOSE (--verbose)

Example:

$ PORT=7777 TILE_DIR=./path/to/your/tiles VERBOSE=true mbtileserver

In a docker-compose.yml file it will look like:

mbtileserver:
  ...

  environment:
    PORT: 7777
    TILE_DIR: "./path/to/your/tiles"
    VERBOSE: true
  entrypoint: mbtileserver

  ...

Reload

mbtileserver optionally supports graceful reload (without interrupting any in-progress requests). This functionality must be enabled with the --enable-reload-signal flag. When enabled, the server can be reloaded by sending it a HUP signal:

$ kill -HUP <pid>

Reloading the server will cause it to pick up changes to the tiles directory, adding new tilesets and removing any that are no longer present.

Using with a reverse proxy

You can use a reverse proxy in front of mbtileserver to intercept incoming requests, provide TLS, etc.

We have used both Caddy and NGINX for our production setups in various projects, usually when we need to proxy to additional backend services.

To make sure that the correct request URL is passed to mbtileserver so that TileJSON and map preview endpoints work correctly, make sure to have your reverse proxy send the following headers:

Scheme (HTTP vs HTTPS): one of X-Forwarded-Proto, X-Forwarded-Protocol, X-Url-Scheme to set the scheme of the request. OR X-Forwarded-Ssl to automatically set the scheme to HTTPS.

Host: Set Host and X-Forwarded-Host.

Caddy Example:

For mbtileserver running on port 8000 locally, add the following to the block for your domain name:

<domain_name> {
    proxy /services localhost:8000 {
        transparent
    }
}

Using transparent preset for the proxy settings instructs Caddy to automatically set appropriate headers.

NGINX Example:

For mbtileserver running on port 8000 locally, add the following to your server block:

server {
   <other config options>

    location /services {
        proxy_set_header Host $http_host;
        proxy_set_header X-Forwarded-Host $server_name;
        proxy_set_header X-Real-IP $remote_addr;
        proxy_pass http://localhost:8000;
    }
}

Docker

Pull the latest image from Docker Hub:

docker pull consbio/mbtileserver:latest

To build the Docker image locally (named mbtileserver):

docker build -t mbtileserver -f Dockerfile .

To run the Docker container on port 8080 with your tilesets in <host tile dir>. Note that by default, mbtileserver runs on port 8000 in the container.

docker run --rm -p 8080:8000 -v <host tile dir>:/tilesets  consbio/mbtileserver

You can pass in additional command-line arguments to mbtileserver, for example, to use certificates and files in <host cert dir> so that you can access the server via HTTPS. The example below uses self-signed certificates generated using mkcert. This example uses automatic redirects, which causes mbtileserver to also listen on port 80 and automatically redirect to 443.

docker run  --rm -p 80:80 443:443 -v <host tile dir>:/tilesets -v <host cert dir>:/certs/ consbio/mbtileserver -c /certs/localhost.pem -k /certs/localhost-key.pem -p 443 --redirect

Alternately, use docker-compose to run:

docker-compose up -d

The default docker-compose.yml configures mbtileserver to connect to port 8080 on the host, and uses the ./mbtiles/testdata folder for tilesets. You can use your own docker-compose.override.yml or environment specific files to set these how you like.

To reload the server:

docker exec -it mbtileserver sh -c "kill -HUP 1"

Specifications

Creating Tiles

You can create mbtiles files using a variety of tools. We have created tiles for use with mbtileserver using:

The root name of each mbtiles file becomes the "tileset_id" as used below.

XYZ Tile API

The primary use of mbtileserver is as a host for XYZ tiles.

These are provided at: /services/<tileset_id>/tiles/{z}/{x}/{y}.<format>

where <format> is one of png, jpg, pbf depending on the type of data in the tileset.

If UTF-8 Grid data are present in the mbtiles file, they will be served up over the grid endpoint: http://localhost/services/states_outline/tiles/{z}/{x}/{y}.json

Grids are assumed to be gzip or zlib compressed in the mbtiles file. These grids are automatically spliced with any grid key/value data if such exists in the mbtiles file.

TileJSON API

mbtileserver automatically creates a TileJSON endpoint for each service at /services/<tileset_id>. The TileJSON uses the same scheme and domain name as is used for the incoming request; the --domain setting does not affect auto-generated URLs.

This API provides most elements of the metadata table in the mbtiles file as well as others that are automatically inferred from tile data.

For example, http://localhost/services/states_outline

returns something like this:

{
  "bounds": [
    -179.23108,
    -14.601813,
    179.85968,
    71.441055
  ],
  "center": [
    0.314297,
    28.419622,
    1
  ],
  "credits": "US Census Bureau",
  "description": "States",
  "format": "png",
  "id": "states_outline",
  "legend": "[{\"elements\": [{\"label\": \"\", \"imageData\": \"\"}], \"name\": \"tl_2015_us_state\"}]",
  "map": "http://localhost/services/states_outline/map",
  "maxzoom": 4,
  "minzoom": 0,
  "name": "states_outline",
  "scheme": "xyz",
  "tags": "states",
  "tilejson": "2.1.0",
  "tiles": [
    "http://localhost/services/states_outline/tiles/{z}/{x}/{y}.png"
  ],
  "type": "overlay",
  "version": "1.0.0"
}

Map preview

mbtileserver automatically creates a map preview page for each tileset at /services/<tileset_id>/map.

This currently uses Leaflet for image tiles and Mapbox GL JS for vector tiles.

ArcGIS API

This project currently provides a minimal ArcGIS tiled map service API for tiles stored in an mbtiles file.

This is enabled with the --enable-arcgis flag.

This should be sufficient for use with online platforms such as Data Basin. Because the ArcGIS API relies on a number of properties that are not commonly available within an mbtiles file, so certain aspects are stubbed out with minimal information.

This API is not intended for use with more full-featured ArcGIS applications such as ArcGIS Desktop.

Available endpoints:

  • Service info: http://localhost:8000/arcgis/rest/services/<tileset_id>/MapServer
  • Layer info: http://localhost:8000/arcgis/rest/services/<tileset_id>/MapServer/layers
  • Tiles: http://localhost:8000/arcgis/rest/services/<tileset_id>/MapServer/tile/0/0/0

Request authorization

Providing a secret key with -s/--secret-key or by setting the HMAC_SECRET_KEY environment variable will restrict access to all server endpoints and tile requests. Requests will only be served if they provide a cryptographic signature created using the same secret key. This allows, for example, an application server to provide authorized clients a short-lived token with which the clients can access tiles for a specific service.

Signatures expire 15 minutes from their creation date to prevent exposed or leaked signatures from being useful past a small time window.

Creating signatures

A signature is a URL-safe, base64 encoded HMAC hash using the SHA1 algorithm. The hash key is an SHA1 key created from a randomly generated salt, and the secret key string. The hash payload is a combination of the ISO-formatted date when the hash was created, and the authorized service id.

The following is an example signature, created in Go for the service id test, the date 2019-03-08T19:31:12.213831+00:00, the salt 0EvkK316T-sBLA, and the secret key YMIVXikJWAiiR3q-JMz1v2Mfmx3gTXJVNqme5kyaqrY

Create the SHA1 key:

serviceId := "test"
date := "2019-03-08T19:31:12.213831+00:00"
salt := "0EvkK316T-sBLA"
secretKey := "YMIVXikJWAiiR3q-JMz1v2Mfmx3gTXJVNqme5kyaqrY"

key := sha1.New()
key.Write([]byte(salt + secretKey))

Create the signature hash:

hash := hmac.New(sha1.New, key.Sum(nil))
message := fmt.Sprintf("%s:%s", date, serviceId)
hash.Write([]byte(message))

Finally, base64-encode the hash:

b64hash := base64.RawURLEncoding.EncodeToString(hash.Sum(nil))
fmt.Println(b64hash) // Should output: 2y8vHb9xK6RSxN8EXMeAEUiYtZk

Making request

Authenticated requests must include the ISO-fromatted date, and a salt-signature combination in the form of: <salt>:<signature>. These can be provided as query parameters:

?date=2019-03-08T19:31:12.213831%2B00:00&signature=0EvkK316T-sBLA:YMIVXikJWAiiR3q-JMz1v2Mfmx3gTXJVNqme5kyaqrY

Or they can be provided as request headers:

X-Signature-Date: 2019-03-08T19:31:12.213831+00:00
X-Signature: 0EvkK316T-sBLA:YMIVXikJWAiiR3q-JMz1v2Mfmx3gTXJVNqme5kyaqrY

Development

Dependencies are managed using go modules. Vendored dependencies are stored in vendor folder by using go mod vendor.

On Windows, it is necessary to install gcc in order to compile mattn/go-sqlite3. MinGW or TDM-GCC should work fine.

If you experience very slow builds each time, it may be that you need to first run

go build -a .

to make subsequent builds much faster.

Development of the templates and static assets likely requires using node and npm. Install these tools in the normal way.

From the handlers/templates/static folder, run

$npm install

to pull in the static dependencies. These are referenced in the package.json file.

Then to build the minified version, run:

$gulp build

Modifying the .go files always requires re-running go build ..

In case you have modified the templates and static assets, you need to run go generate ./handlers/templates.go to ensure that your modifications are embedded into the executable. For this to work, you must have [github.com/shurcooL/vfsgen)[https://github.com/shurcooL/vfsgen) installed.

go generate ./handlers/templates.go

This will rewrite the assets_vfsdata.go which you must commit along with your modification. You should run go build after go generate.

During the development cycle you may use go build -tags dev . to build the binary, in which case it will always take the assets from the relative file path handlers/templates/ directly and you can omit the go generate step. (note: this is currently not working properly) But do not forget to perform it in the end.

Changes

See CHANGELOG.

Contributors ✨

Thanks goes to these wonderful people (emoji key):

Brendan Ward
Brendan Ward

💻 📖 🐛 📝 👀 🤔
Fabian Wickborn
Fabian Wickborn

💻 📖 🐛 🤔
Nik Molnar
Nik Molnar

💻 🤔 🐛
Nikolay Korotkiy
Nikolay Korotkiy

💻 🐛
Robert Brown
Robert Brown

💻
Mihail
Mihail

💻
Marko Burjek
Marko Burjek

💻
Kristjan
Kristjan

💻
evbarnett
evbarnett

🐛
walkaholic.me
walkaholic.me

🐛
Brian Voelker
Brian Voelker

🐛
Georg Leciejewski
Georg Leciejewski

🐛

This project follows the all-contributors specification. Contributions of any kind welcome!

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].