All Projects → aksub99 → MolDQN-pytorch

aksub99 / MolDQN-pytorch

Licence: MIT license
A PyTorch Implementation of "Optimization of Molecules via Deep Reinforcement Learning".

Programming Languages

python
139335 projects - #7 most used programming language

Projects that are alternatives of or similar to MolDQN-pytorch

pytopomat
Python Topological Materials (pytopomat) is a code for easy, high-throughput analysis of topological materials.
Stars: ✭ 19 (-67.24%)
Mutual labels:  chemistry, materials-science, materials-informatics
chemprop
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.
Stars: ✭ 75 (+29.31%)
Mutual labels:  chemistry, molecule, drug-discovery
py4chemoinformatics
Python for chemoinformatics
Stars: ✭ 78 (+34.48%)
Mutual labels:  chemistry, drug-discovery
xyz2graph
Convert an xyz file into a molecular graph and create a 3D visualisation of the graph.
Stars: ✭ 36 (-37.93%)
Mutual labels:  chemistry, molecule
masci-tools
Tools, utility, parsers useful in daily material science work
Stars: ✭ 18 (-68.97%)
Mutual labels:  materials-science, materials-informatics
dmol-book
Deep learning for molecules and materials book
Stars: ✭ 458 (+689.66%)
Mutual labels:  chemistry, materials-informatics
panel-chemistry
🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python and HoloViz Panel.
Stars: ✭ 94 (+62.07%)
Mutual labels:  chemistry, molecule
MolecularGraph.jl
Graph-based molecule modeling toolkit for cheminformatics
Stars: ✭ 144 (+148.28%)
Mutual labels:  chemistry, molecule
nequip
NequIP is a code for building E(3)-equivariant interatomic potentials
Stars: ✭ 312 (+437.93%)
Mutual labels:  drug-discovery, materials-science
chemicalx
A PyTorch and TorchDrug based deep learning library for drug pair scoring.
Stars: ✭ 176 (+203.45%)
Mutual labels:  chemistry, drug-discovery
Version3-1
Version 2020 (3.1) of Chem4Word - A Chemistry Add-In for Microsoft Word
Stars: ✭ 14 (-75.86%)
Mutual labels:  chemistry, molecule
olympus
Olympus: a benchmarking framework for noisy optimization and experiment planning
Stars: ✭ 38 (-34.48%)
Mutual labels:  chemistry, materials-science
chemiscope
An interactive structure/property explorer for materials and molecules
Stars: ✭ 41 (-29.31%)
Mutual labels:  molecule, materials-science
Version3
Version 3 of Chem4Word - A Chemistry Add-In for Microsoft Word
Stars: ✭ 53 (-8.62%)
Mutual labels:  chemistry, molecule
Deepchem
Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, Materials Science and Biology
Stars: ✭ 3,324 (+5631.03%)
Mutual labels:  drug-discovery, materials-science
GLaDOS
Web Interface for ChEMBL @ EMBL-EBI
Stars: ✭ 28 (-51.72%)
Mutual labels:  chemistry, drug-discovery
data-resources-for-materials-science
A list of databases, datasets and books/handbooks where you can find materials properties for machine learning applications.
Stars: ✭ 81 (+39.66%)
Mutual labels:  materials-science, materials-informatics
CatKit
General purpose tools for high-throughput catalysis
Stars: ✭ 48 (-17.24%)
Mutual labels:  materials-science, materials-informatics
Chemozart
Web-based 3D molecule editor and visualizer with molecular mechanics calculators.
Stars: ✭ 142 (+144.83%)
Mutual labels:  chemistry, molecule
Thermo
Thermodynamics and Phase Equilibrium component of Chemical Engineering Design Library (ChEDL)
Stars: ✭ 279 (+381.03%)
Mutual labels:  chemistry, molecule

MolDQN-pytorch

MIT license made-with-python

PyTorch implementation of MolDQN as described in Optimization of Molecules via Deep Reinforcement Learning by Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N. Zare and Patrick Riley.

Installation

From source:

  1. Install rdkit.
    conda create -c rdkit -n my-rdkit-env rdkit
    conda activate my-rdkit-env
    conda install -c conda-forge rdkit

  2. Clone this repository.
    git clone https://github.com/aksub99/MolDQN-pytorch.git
    cd MolDQN-pytorch

  3. Install the requirements given in requirements.txt.
    pip install -r requirements.txt

  4. Install baselines.
    pip install "git+https://github.com/openai/baselines.git"

From Docker:

Using a docker image requires an NVIDIA GPU. If you do not have a GPU please follow the directions for installing from source In order to get GPU support you will have to use the nvidia-docker plugin.

# Build the Dockerfile in Dockerfiles/Dockerfile to create a Docker image.
cd Dockerfiles
docker build -t moldqn_pytorch:latest .

# This will create a container from the image we just created.
nvidia-docker run -[Options] moldqn_pytorch:latest python path/to/main.py

Please remember to modify the TB_LOG_PATH variable in main.py depending on where you wish to store your tensorboard runs file.

Training the MolDQN:

python main.py

A simple example to train the model on a single property optimization task can be seen in examples/MolDQN-pytorch.ipynb.

Results:

The following was the reward curve obtained when the model was trained for 5000 episodes on a single property optimization task (QED in this case).

References:

The original tensorflow implementation can be found at https://github.com/google-research/google-research/tree/master/mol_dqn This repository re-uses some code from the original implementation.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].