All Projects → schochastics → netrankr

schochastics / netrankr

Licence: Unknown, MIT licenses found Licenses found Unknown LICENSE MIT LICENSE.md
An R package for network centrality

Programming Languages

r
7636 projects
C++
36643 projects - #6 most used programming language
TeX
3793 projects

Projects that are alternatives of or similar to netrankr

NetBID
Data-driven Network-based Bayesian Inference of Drivers
Stars: ✭ 21 (-46.15%)
Mutual labels:  r-package, network-analysis
infomap ecology package
Package with functions to handle network data and run Infomap, inspired by ecological networks
Stars: ✭ 14 (-64.1%)
Mutual labels:  r-package, network-analysis
MRFcov
Markov random fields with covariates
Stars: ✭ 21 (-46.15%)
Mutual labels:  r-package, network-analysis
finch
⚠️ ARCHIVED ⚠️ Read Darwin Core Archive files
Stars: ✭ 17 (-56.41%)
Mutual labels:  r-package
autumn
autumn: Fast, Modern, and Tidy-Friendly Iterative Raking in R.
Stars: ✭ 26 (-33.33%)
Mutual labels:  r-package
bold
Interface to the Bold Systems barcode webservice
Stars: ✭ 14 (-64.1%)
Mutual labels:  r-package
jsonld
R wrapper for jsonld.js JavaScript library
Stars: ✭ 34 (-12.82%)
Mutual labels:  r-package
ropsec
㊙️ Operations security for R developers
Stars: ✭ 27 (-30.77%)
Mutual labels:  r-package
PostcodesioR
API wrapper around postcodes.io - free UK postcode lookup and geocoder
Stars: ✭ 36 (-7.69%)
Mutual labels:  r-package
stellar
Search your github stars in R
Stars: ✭ 24 (-38.46%)
Mutual labels:  r-package
diepssect
A public repo for hacky diep stuff - networking protocol, WebAssembly, memory editing, & physics
Stars: ✭ 26 (-33.33%)
Mutual labels:  network-analysis
vioplot
Development version of vioplot R package (CRAN maintainer)
Stars: ✭ 25 (-35.9%)
Mutual labels:  r-package
ctsTraffic
ctsTraffic is a highly scalable client/server networking tool giving detailed performance and reliability analytics
Stars: ✭ 125 (+220.51%)
Mutual labels:  network-analysis
rcheatsheet
⛔ ARCHIVED ⛔ A package to create cheatsheets
Stars: ✭ 33 (-15.38%)
Mutual labels:  r-package
hier config
Hierarchical Configuration
Stars: ✭ 86 (+120.51%)
Mutual labels:  network-analysis
rcppmsgpack
MsgPack Headers for R / msgpack.org[R]
Stars: ✭ 17 (-56.41%)
Mutual labels:  r-package
dirdf
R package: dirdf - Extracts Metadata from Directory and File Names
Stars: ✭ 57 (+46.15%)
Mutual labels:  r-package
ghrecipes
⛔ ARCHIVED ⛔ Provides some helper functions for using the GitHub V4 API
Stars: ✭ 28 (-28.21%)
Mutual labels:  r-package
essurvey
Download data from the European Social Survey
Stars: ✭ 47 (+20.51%)
Mutual labels:  r-package
nomisr
Access UK official statistics from the Nomis database through R.
Stars: ✭ 30 (-23.08%)
Mutual labels:  r-package

netrankr

R-CMD-check CRAN Status Badge CRAN Downloads codecov

Overview

The literature is flooded with centrality indices and new ones are introduced on a regular basis. Although there exist several theoretical and empirical guidelines on when to use certain indices, there still exists plenty of ambiguity in the concept of network centrality. To date, network centrality is nothing more than applying indices to a network:

The only degree of freedom is the choice of index. The package comes with an Rstudio addin (index_builder()), which allows to build or choose from more than 20 different indices. Blindly (ab)using this function is highly discouraged!

The netrankr package is based on the idea that centrality is more than a conglomeration of indices. Decomposing them in a series of microsteps offers the posibility to gradually add ideas about centrality, without succumbing to trial-and-error approaches. Further, it allows for alternative assessment methods which can be more general than the index-driven approach:

The new approach is centered around the concept of positions, which are defined as the relations and potential attributes of a node in a network. The aggregation of the relations leads to the definition of indices. However, positions can also be compared via positional dominance, leading to partial centrality rankings and the option to calculate probabilistic centrality rankings.

For a more detailed theoretical background, consult the Literature at the end of this page.


Installation

To install from CRAN:

 install.packages("netrankr")

To install the developer version from github:

#install.packages("devtools")
devtools::install_github("schochastics/netrankr")

Simple Example

This example briefly explains some of the functionality of the package and the difference to an index driven approach. For a more realistic application see the use case vignette.

We work with the following small graph.

library(igraph)
library(netrankr)

g <- graph.empty(n = 11,directed = FALSE)
g <- add_edges(g,c(1,11,2,4,3,5,3,11,4,8,5,9,5,11,6,7,6,8,
                    6,10,6,11,7,9,7,10,7,11,8,9,8,10,9,10))

Say we are interested in the most central node of the graph and simply compute some standard centrality scores with the igraph package. Defining centrality indices in the netrankr package is explained in the centrality indices vignette.

cent_scores <- data.frame(
   degree = degree(g),
   betweenness = round(betweenness(g),4),
   closeness = round(closeness(g),4),
   eigenvector = round(eigen_centrality(g)$vector,4),
   subgraph = round(subgraph_centrality(g),4))

# What are the most central nodes for each index?
apply(cent_scores,2,which.max)
#>      degree betweenness   closeness eigenvector    subgraph 
#>          11           8           6           7          10

As you can see, each index assigns the highest value to a different vertex.

A more general assessment starts by calculating the neighborhood inclusion preorder.

P <- neighborhood_inclusion(g)
P
#>    1 2 3 4 5 6 7 8 9 10 11
#> 1  0 0 1 0 1 1 1 0 0  0  1
#> 2  0 0 0 1 0 0 0 1 0  0  0
#> 3  0 0 0 0 1 0 0 0 0  0  1
#> 4  0 0 0 0 0 0 0 0 0  0  0
#> 5  0 0 0 0 0 0 0 0 0  0  0
#> 6  0 0 0 0 0 0 0 0 0  0  0
#> 7  0 0 0 0 0 0 0 0 0  0  0
#> 8  0 0 0 0 0 0 0 0 0  0  0
#> 9  0 0 0 0 0 0 0 0 0  0  0
#> 10 0 0 0 0 0 0 0 0 0  0  0
#> 11 0 0 0 0 0 0 0 0 0  0  0

Schoch & Brandes (2016) showed that N(u) \subseteq N[v] (i.e. P[u,v]=1) implies c(u) \leq c(v) for centrality indices c, which are defined via specific path algebras. These include many of the well-known measures like closeness (and variants), betweenness (and variants) as well as many walk-based indices (eigenvector and subgraph centrality, total communicability,…).

Neighborhood-inclusion defines a partial ranking on the set of nodes. Each ranking that is in accordance with this partial ranking yields a proper centrality ranking. Each of these ranking can thus potentially be the outcome of a centrality index.

Using rank intervals, we can examine the minimal and maximal possible rank of each node. The bigger the intervals are, the more freedom exists for indices to rank nodes differently.

plot(rank_intervals(P),cent_scores = cent_scores,ties.method="average")

The potential ranks of nodes are not uniformly distributed in the intervals. To get the exact probabilities, the function exact_rank_prob() can be used.

res <- exact_rank_prob(P)
res
#> Number of possible centrality rankings:  739200 
#> Equivalence Classes (max. possible): 11 (11)
#> - - - - - - - - - - 
#> Rank Probabilities (rows:nodes/cols:ranks)
#>            1         2         3         4         5         6         7
#> 1  0.5454545 0.2727273 0.1212121 0.0454545 0.0129870 0.0021645 0.0000000
#> 2  0.2727273 0.2181818 0.1696970 0.1272727 0.0909091 0.0606061 0.0363636
#> 3  0.0000000 0.1636364 0.2181818 0.2090909 0.1688312 0.1190476 0.0727273
#> 4  0.0000000 0.0272727 0.0515152 0.0727273 0.0909091 0.1060606 0.1181818
#> 5  0.0000000 0.0000000 0.0181818 0.0454545 0.0753247 0.1034632 0.1272727
#> 6  0.0000000 0.0545455 0.0848485 0.1000000 0.1064935 0.1086580 0.1090909
#> 7  0.0000000 0.0545455 0.0848485 0.1000000 0.1064935 0.1086580 0.1090909
#> 8  0.0000000 0.0272727 0.0515152 0.0727273 0.0909091 0.1060606 0.1181818
#> 9  0.0909091 0.0909091 0.0909091 0.0909091 0.0909091 0.0909091 0.0909091
#> 10 0.0909091 0.0909091 0.0909091 0.0909091 0.0909091 0.0909091 0.0909091
#> 11 0.0000000 0.0000000 0.0181818 0.0454545 0.0753247 0.1034632 0.1272727
#>            8          9        10        11
#> 1  0.0000000 0.00000000 0.0000000 0.0000000
#> 2  0.0181818 0.00606061 0.0000000 0.0000000
#> 3  0.0363636 0.01212121 0.0000000 0.0000000
#> 4  0.1272727 0.13333333 0.1363636 0.1363636
#> 5  0.1454545 0.15757576 0.1636364 0.1636364
#> 6  0.1090909 0.10909091 0.1090909 0.1090909
#> 7  0.1090909 0.10909091 0.1090909 0.1090909
#> 8  0.1272727 0.13333333 0.1363636 0.1363636
#> 9  0.0909091 0.09090909 0.0909091 0.0909091
#> 10 0.0909091 0.09090909 0.0909091 0.0909091
#> 11 0.1454545 0.15757576 0.1636364 0.1636364
#> - - - - - - - - - - 
#> Relative Rank Probabilities (row ranked lower than col)
#>           1         2        3        4        5        6        7        8
#> 1  0.000000 0.6666667 1.000000 0.952381 1.000000 1.000000 1.000000 0.952381
#> 2  0.333333 0.0000000 0.666667 1.000000 0.916667 0.833333 0.833333 1.000000
#> 3  0.000000 0.3333333 0.000000 0.797619 1.000000 0.750000 0.750000 0.797619
#> 4  0.047619 0.0000000 0.202381 0.000000 0.559524 0.440476 0.440476 0.500000
#> 5  0.000000 0.0833333 0.000000 0.440476 0.000000 0.375000 0.375000 0.440476
#> 6  0.000000 0.1666667 0.250000 0.559524 0.625000 0.000000 0.500000 0.559524
#> 7  0.000000 0.1666667 0.250000 0.559524 0.625000 0.500000 0.000000 0.559524
#> 8  0.047619 0.0000000 0.202381 0.500000 0.559524 0.440476 0.440476 0.000000
#> 9  0.142857 0.2500000 0.357143 0.625000 0.678571 0.571429 0.571429 0.625000
#> 10 0.142857 0.2500000 0.357143 0.625000 0.678571 0.571429 0.571429 0.625000
#> 11 0.000000 0.0833333 0.000000 0.440476 0.500000 0.375000 0.375000 0.440476
#>           9       10       11
#> 1  0.857143 0.857143 1.000000
#> 2  0.750000 0.750000 0.916667
#> 3  0.642857 0.642857 1.000000
#> 4  0.375000 0.375000 0.559524
#> 5  0.321429 0.321429 0.500000
#> 6  0.428571 0.428571 0.625000
#> 7  0.428571 0.428571 0.625000
#> 8  0.375000 0.375000 0.559524
#> 9  0.000000 0.500000 0.678571
#> 10 0.500000 0.000000 0.678571
#> 11 0.321429 0.321429 0.000000
#> - - - - - - - - - - 
#> Expected Ranks (higher values are better)
#>       1       2       3       4       5       6       7       8       9      10 
#> 1.71429 3.00000 4.28571 7.50000 8.14286 6.85714 6.85714 7.50000 6.00000 6.00000 
#>      11 
#> 8.14286 
#> - - - - - - - - - - 
#> SD of Rank Probabilities
#>        1        2        3        4        5        6        7        8 
#> 0.958315 1.897367 1.724967 2.539685 2.159932 2.721794 2.721794 2.539685 
#>        9       10       11 
#> 3.162278 3.162278 2.159932 
#> - - - - - - - - - -

For the graph g we can therefore come up with 739,200 indices that would rank the nodes differently.

rank.prob contains the probabilities for each node to occupy a certain rank. For instance, the probability for each node to be the most central one is as follows.

round(res$rank.prob[ ,11],2)
#>    1    2    3    4    5    6    7    8    9   10   11 
#> 0.00 0.00 0.00 0.14 0.16 0.11 0.11 0.14 0.09 0.09 0.16

relative.rank contains the relative rank probabilities. An entry relative.rank[u,v] indicates how likely it is that v is more central than u.

# How likely is it, that 6 is more central than 3?
round(res$relative.rank[3,6],2)
#> [1] 0.75

expected.ranks contains the expected centrality ranks for all nodes. They are derived on the basis of rank.prob.

round(res$expected.rank,2)
#>    1    2    3    4    5    6    7    8    9   10   11 
#> 1.71 3.00 4.29 7.50 8.14 6.86 6.86 7.50 6.00 6.00 8.14

The higher the value, the more central a node is expected to be.

Note: The set of rankings grows exponentially in the number of nodes and the exact calculation becomes infeasible quite quickly and approximations need to be used. Check the benchmark results for guidelines.


Theoretical Background

netrankr is based on a series of papers that appeared in recent years. If you want to learn more about the theoretical background of the package, consult the following literature:

Schoch, David. (2018). Centrality without Indices: Partial rankings and rank Probabilities in networks. Social Networks, 54, 50-60.(link)

Schoch, David & Valente, Thomas W., & Brandes, Ulrik. (2017). Correlations among centrality indices and a class of uniquely ranked graphs. Social Networks, 50, 46-54.(link)

Schoch, David & Brandes, Ulrik. (2016). Re-conceptualizing centrality in social networks. European Journal of Appplied Mathematics, 27(6), 971–985. (link)

Brandes, Ulrik. (2016). Network Positions. Methodological Innovations, 9, 2059799116630650. (link)

Code of Conduct

Please note that the netrankr project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].