All Projects → dsilvestro → PyRate

dsilvestro / PyRate

Licence: AGPL-3.0 license
PyRate is a program to estimate speciation, extinction, and preservation rates from fossil occurrence data using a Bayesian framework.

Programming Languages

python
139335 projects - #7 most used programming language
r
7636 projects
C++
36643 projects - #6 most used programming language

Projects that are alternatives of or similar to PyRate

Bayesianrecurrentnn
Implementation of Bayesian Recurrent Neural Networks by Fortunato et. al
Stars: ✭ 201 (+246.55%)
Mutual labels:  bayesian-inference
statsr
Companion package for the Coursera Statistics with R specialization
Stars: ✭ 67 (+15.52%)
Mutual labels:  bayesian-inference
nestle
Pure Python, MIT-licensed implementation of nested sampling algorithms for evaluating Bayesian evidence.
Stars: ✭ 66 (+13.79%)
Mutual labels:  bayesian-inference
Dynesty
Dynamic Nested Sampling package for computing Bayesian posteriors and evidences
Stars: ✭ 208 (+258.62%)
Mutual labels:  bayesian-inference
Stheno.jl
Probabilistic Programming with Gaussian processes in Julia
Stars: ✭ 233 (+301.72%)
Mutual labels:  bayesian-inference
flowtorch-old
Separating Normalizing Flows code from Pyro and improving API
Stars: ✭ 36 (-37.93%)
Mutual labels:  bayesian-inference
Dynamichmc.jl
Implementation of robust dynamic Hamiltonian Monte Carlo methods (NUTS) in Julia.
Stars: ✭ 172 (+196.55%)
Mutual labels:  bayesian-inference
svae cf
[ WSDM '19 ] Sequential Variational Autoencoders for Collaborative Filtering
Stars: ✭ 38 (-34.48%)
Mutual labels:  bayesian-inference
Soss.jl
Probabilistic programming via source rewriting
Stars: ✭ 246 (+324.14%)
Mutual labels:  bayesian-inference
pysgmcmc
Bayesian Deep Learning with Stochastic Gradient MCMC Methods
Stars: ✭ 31 (-46.55%)
Mutual labels:  bayesian-inference
Probabilistic Models
Collection of probabilistic models and inference algorithms
Stars: ✭ 217 (+274.14%)
Mutual labels:  bayesian-inference
Master Thesis Bayesiancnn
Master Thesis on Bayesian Convolutional Neural Network using Variational Inference
Stars: ✭ 222 (+282.76%)
Mutual labels:  bayesian-inference
extinction
Fast interstellar dust extinction laws in Python
Stars: ✭ 29 (-50%)
Mutual labels:  extinction
Elfi
ELFI - Engine for Likelihood-Free Inference
Stars: ✭ 208 (+258.62%)
Mutual labels:  bayesian-inference
variational-bayes-cs
Scalable sparse Bayesian learning for large CS recovery problems
Stars: ✭ 17 (-70.69%)
Mutual labels:  bayesian-inference
Stan
Stan development repository. The master branch contains the current release. The develop branch contains the latest stable development. See the Developer Process Wiki for details.
Stars: ✭ 2,177 (+3653.45%)
Mutual labels:  bayesian-inference
TemporalGPs.jl
Fast inference for Gaussian processes in problems involving time. Partly built on results from https://proceedings.mlr.press/v161/tebbutt21a.html
Stars: ✭ 89 (+53.45%)
Mutual labels:  bayesian-inference
SCICoNE
Single-cell copy number calling and event history reconstruction.
Stars: ✭ 20 (-65.52%)
Mutual labels:  bayesian-inference
tramp
Tree Approximate Message Passing
Stars: ✭ 30 (-48.28%)
Mutual labels:  bayesian-inference
approxposterior
A Python package for approximate Bayesian inference and optimization using Gaussian processes
Stars: ✭ 36 (-37.93%)
Mutual labels:  bayesian-inference

PyRate is a program to estimate speciation, extinction, and preservation rates from fossil occurrence data using a Bayesian framework.

DOI


The latest version of PyRate uses Python v.3. To upgrade Python visit: https://www.python.org/downloads/. Older versions of PyRate for Python v.2 are available here.


PyRate is licensed under a AGPLv3 License.

The program's documentation is available here:


The main methods are described here:

  • Silvestro D., Salamin N., Antonelli A., Meyer X. (2019) Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology, doi:10.1017/pab.2019.23

  • Silvestro D., Schnitzler J., Liow L.H., Antonelli A., Salamin N. (2014) Bayesian Estimation of Speciation and Extinction from Incomplete Fossil Occurrence Data. Systematic Biology, 63, 349-367.

  • Silvestro D., Salamin N., Schnitzler J. (2014) PyRate: A new program to estimate speciation and extinction rates from incomplete fossil record. Methods in Ecology and Evolution, 5, 1126-1131.

  • See tutorials 1, 2, and 3

The multivariate birth-death models (MCDD and MBD) are described here:

  • Silvestro D., Antonelli A., Salamin N., Quental T. B. (2015) The role of clade competition in the diversification of North American canids. PNAS, 112, 8684-8689.

  • Silvestro D., Pires M. M., Quental T., Salamin N. (2017) Bayesian estimation of multiple clade competition from fossil data. Evolutionary Ecology Research, 18:41-59.

  • Lehtonen S., Silvestro D., Karger D. N., Scotese C., Tuomisto H., Kessler M., Peña C., Wahlberg N., Antonelli A. (2017) Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Scientific Reports, 7:4831.

  • See tutorial 4

The dispersal-extinction-sampling model (DES) is described here:

  • Silvestro D., Zizka A., Bacon C. D., Cascales-Minana B., Salamin N., Antonelli, A. (2016) Fossil Biogeography: A new model to infer dispersal, extinction and sampling from paleontological data. Philosophical Transactions of the Royal Society B 371:20150225.

  • Hauffe T., Pires M.M., Quental T.B., Wilke T., Silvestro, D. (2022) A quantitative framework to infer the effect of traits, diversity and environment on dispersal and extinction rates from fossils. Methods in Ecology and Evolution doi:10.1111/2041-210X.13845

  • See tutorial 5

The age-dependent extinction models (ADE) are described here:

  • Silvestro et al. (2019) A 450 million years long latitudinal gradient in age‐dependent extinction. Ecology Letters, doi: 10.1111/ele.13441.

  • Hagen O., Andermann T., Quental T. B., Antonelli A., Silvestro D. (2017) Estimating Age-dependent Extinction: Contrasting Evidence from Fossils and Phylogenies. Systematic Biology, doi: 10.1093/sysbio/syx082.

  • For the Bayesian implementation see tutorial 4. The ADE-NN model (using neural networks) is available here

The birth death chrono-species model (BDC) is described here:

  • Silvestro D., Warnock R., Gavryushkina A., Stadler T. (2018) Closing the gap between palaeontological and neontological speciation and extinction rate estimates. Nature Communications, doi: 10.1038/s41467-018-07622-y.

  • See tutorial 4

The fossilized birth-death-range model (FBDrange) is described here:

  • Warnock R., Heath T. A., Stadler T. (2020) Assessing the impact of incomplete species sampling on estimates of speciation and extinction rates. Paleobiology, doi: 10.1017/pab.2020.12.

  • Stadler T., Gavryushkina A., Warnock R. C., Drummond A. J., Heath T. A. (2018). The fossilized birth-death model for the analysis of stratigraphic range data under different speciation modes. Journal of Theoretical Biology doi: 10.1016/j.jtbi.2018.03.0.

  • Tutorial in prep.

The multi-trait extinction model (MTE) is described here:

  • Pimiento C., Bacon C. D., Silvestro D., Handy A., Jaramillo C., Zizka A., Meyer X., Antonelli A. (2020) Selective extinction against redundant species buffers functional diversity. Proceedings of the Royal Society B doi: 10.1098/rspb.2020.1162.

  • Tutorial in prep., example file here.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].