All Projects → zerotier → Zerotierone

zerotier / Zerotierone

Licence: other
A Smart Ethernet Switch for Earth

Programming Languages

C++
36643 projects - #6 most used programming language
c
50402 projects - #5 most used programming language
assembly
5116 projects
C#
18002 projects
objective c
16641 projects - #2 most used programming language
java
68154 projects - #9 most used programming language

Projects that are alternatives of or similar to Zerotierone

Libzt
ZeroTier Sockets - Put a network stack in your app
Stars: ✭ 486 (-93.8%)
Mutual labels:  networking, vpn, peer-to-peer, sdn
nconnect
Securely connect to remote machines without the need of any server, public IP address, or publicly exposed ports.
Stars: ✭ 38 (-99.52%)
Mutual labels:  vpn, sdn, decentralization
zero-ui
ZeroUI - ZeroTier Controller Web UI - is a web user interface for a self-hosted ZeroTier network controller.
Stars: ✭ 432 (-94.49%)
Mutual labels:  vpn, sdn, sd-wan
Rust Libp2p
The Rust Implementation of the libp2p networking stack.
Stars: ✭ 2,062 (-73.7%)
Mutual labels:  networking, peer-to-peer, decentralization
husarnet
Husarnet is a Peer-to-Peer VPN to connect your laptops, servers and microcontrollers over the Internet with zero configuration.
Stars: ✭ 128 (-98.37%)
Mutual labels:  peer-to-peer, vpn, sdn
wirelink
Experimental P2P configuration plane for Wireguard
Stars: ✭ 16 (-99.8%)
Mutual labels:  peer-to-peer, vpn
Vedetta
OpenBSD Router Boilerplate
Stars: ✭ 260 (-96.68%)
Mutual labels:  vpn, sdn
Kube Ovn
A Kubernetes Network Fabric for Enterprises that is Rich in Functions and Easy in Operations
Stars: ✭ 798 (-89.82%)
Mutual labels:  networking, sdn
Dsnet
Simple command to manage a centralised wireguard VPN. Think wg-quick but quicker: key generation + address allocation.
Stars: ✭ 365 (-95.34%)
Mutual labels:  networking, vpn
SDN-Datacenter
Making a software defined datacenter. Which includes various virtual networks with mutiple network functions deployed on it. This includes SDN network deployed on real hardware.
Stars: ✭ 28 (-99.64%)
Mutual labels:  sdn, virtual-network
Iwant
Commandline tool for searching and downloading files in LAN network, without any central server
Stars: ✭ 268 (-96.58%)
Mutual labels:  peer-to-peer, decentralization
Lf
Fully Decentralized Fully Replicated Key/Value Store
Stars: ✭ 809 (-89.68%)
Mutual labels:  peer-to-peer, decentralization
TupleNet
TupleNet is a lightweight tool for building virtual-networking
Stars: ✭ 26 (-99.67%)
Mutual labels:  sdn, virtual-network
Wireguard Docs
📖 Unofficial WireGuard Documentation: Setup, Usage, Configuration, and full example setups for VPNs supporting both servers & roaming clients.
Stars: ✭ 3,201 (-59.17%)
Mutual labels:  networking, vpn
netmaker
Netmaker makes networks with WireGuard. Netmaker automates fast, secure, and distributed virtual networks.
Stars: ✭ 4,147 (-47.1%)
Mutual labels:  vpn, virtual-network
Poseidon
Poseidon is a python-based application that leverages software defined networks (SDN) to acquire and then feed network traffic to a number of machine learning techniques. The machine learning algorithms classify and predict the type of device.
Stars: ✭ 310 (-96.05%)
Mutual labels:  networking, sdn
Peerdiscovery
Pure-Go library for cross-platform local peer discovery using UDP multicast 👩 🔁 👩
Stars: ✭ 476 (-93.93%)
Mutual labels:  networking, peer-to-peer
Wesher
wireguard overlay mesh network manager
Stars: ✭ 461 (-94.12%)
Mutual labels:  networking, vpn
Wireguard Manager
Self-hosted Wireguard Installer / Manager for CentOS, Debian, Ubuntu, Arch, Fedora, Redhat, Raspbian
Stars: ✭ 478 (-93.9%)
Mutual labels:  networking, vpn
Wirehub
🌍 Decentralized, peer-to-peer and secure overlay networks
Stars: ✭ 459 (-94.14%)
Mutual labels:  vpn, peer-to-peer

ZeroTier - Global Area Networking

This document is written for a software developer audience. For information on using ZeroTier, see the: Website, Documentation Site, and Discussion Forum

ZeroTier is a smart programmable Ethernet switch for planet Earth. It allows all networked devices, VMs, containers, and applications to communicate as if they all reside in the same physical data center or cloud region.

This is accomplished by combining a cryptographically addressed and secure peer to peer network (termed VL1) with an Ethernet emulation layer somewhat similar to VXLAN (termed VL2). Our VL2 Ethernet virtualization layer includes advanced enterprise SDN features like fine grained access control rules for network micro-segmentation and security monitoring.

All ZeroTier traffic is encrypted end-to-end using secret keys that only you control. Most traffic flows peer to peer, though we offer free (but slow) relaying for users who cannot establish peer to peer connections.

The goals and design principles of ZeroTier are inspired by among other things the original Google BeyondCorp paper and the Jericho Forum with its notion of "deperimeterization."

Visit ZeroTier's site for more information and pre-built binary packages. Apps for Android and iOS are available for free in the Google Play and Apple app stores.

ZeroTier is licensed under the BSL version 1.1. See LICENSE.txt and the ZeroTier pricing page for details. ZeroTier is free to use internally in businesses and academic institutions and for non-commercial purposes. Certain types of commercial use such as building closed-source apps and devices based on ZeroTier or offering ZeroTier network controllers and network management as a SaaS service require a commercial license.

A small amount of third party code is also included in ZeroTier and is not subject to our BSL license. See AUTHORS.md for a list of third party code, where it is included, and the licenses that apply to it. All of the third party code in ZeroTier is liberally licensed (MIT, BSD, Apache, public domain, etc.).

Getting Started

Everything in the ZeroTier world is controlled by two types of identifier: 40-bit/10-digit ZeroTier addresses and 64-bit/16-digit network IDs. These identifiers are easily distinguished by their length. A ZeroTier address identifies a node or "device" (laptop, phone, server, VM, app, etc.) while a network ID identifies a virtual Ethernet network that can be joined by devices.

ZeroTier addresses can be thought of as port numbers on an enormous planet-wide enterprise Ethernet smart switch supporting VLANs. Network IDs are VLAN IDs to which these ports may be assigned. A single port can be assigned to more than one VLAN.

A ZeroTier address looks like 8056c2e21c and a network ID looks like 8056c2e21c000001. Network IDs are composed of the ZeroTier address of that network's primary controller and an arbitrary 24-bit ID that identifies the network on this controller. Network controllers are roughly analogous to SDN controllers in SDN protocols like OpenFlow, though as with the analogy between VXLAN and VL2 this should not be read to imply that the protocols or design are the same. You can use our convenient and inexpensive SaaS hosted controllers at my.zerotier.com or run your own controller if you don't mind messing around with JSON configuration files or writing scripts to do so.

Project Layout

The base path contains the ZeroTier One service main entry point (one.cpp), self test code, makefiles, etc.

  • artwork/: icons, logos, etc.
  • attic/: old stuff and experimental code that we want to keep around for reference.
  • controller/: the reference network controller implementation, which is built and included by default on desktop and server build targets.
  • debian/: files for building Debian packages on Linux.
  • doc/: manual pages and other documentation.
  • ext/: third party libraries, binaries that we ship for convenience on some platforms (Mac and Windows), and installation support files.
  • include/: include files for the ZeroTier core.
  • java/: a JNI wrapper used with our Android mobile app. (The whole Android app is not open source but may be made so in the future.)
  • macui/: a Macintosh menu-bar app for controlling ZeroTier One, written in Objective C.
  • node/: the ZeroTier virtual Ethernet switch core, which is designed to be entirely separate from the rest of the code and able to be built as a stand-alone OS-independent library. Note to developers: do not use C++11 features in here, since we want this to build on old embedded platforms that lack C++11 support. C++11 can be used elsewhere.
  • osdep/: code to support and integrate with OSes, including platform-specific stuff only built for certain targets.
  • rule-compiler/: JavaScript rules language compiler for defining network-level rules.
  • service/: the ZeroTier One service, which wraps the ZeroTier core and provides VPN-like connectivity to virtual networks for desktops, laptops, servers, VMs, and containers.
  • windows/: Visual Studio solution files, Windows service code, and the Windows task bar app UI.

Build and Platform Notes

To build on Mac and Linux just type make. On FreeBSD and OpenBSD gmake (GNU make) is required and can be installed from packages or ports. For Windows there is a Visual Studio solution in windows/.

  • Mac
    • Xcode command line tools for OSX 10.8 or newer are required.
  • Linux
    • The minimum compiler versions required are GCC/G++ 4.9.3 or CLANG/CLANG++ 3.4.2. (Install clang on CentOS 7 as G++ is too old.)
    • Linux makefiles automatically detect and prefer clang/clang++ if present as it produces smaller and slightly faster binaries in most cases. You can override by supplying CC and CXX variables on the make command line.
  • Windows
    • Windows 7 or newer is supported. This may work on Vista but isn't officially supported there. It will not work on Windows XP.
    • We build with Visual Studio 2017. Older versions may not work. Clang or MinGW will also probably work but may require some makefile hacking.
  • FreeBSD
    • GNU make is required. Type gmake to build.
  • OpenBSD
    • There is a limit of four network memberships on OpenBSD as there are only four tap devices (/dev/tap0 through /dev/tap3).
    • GNU make is required. Type gmake to build.

Typing make selftest will build a zerotier-selftest binary which unit tests various internals and reports on a few aspects of the build environment. It's a good idea to try this on novel platforms or architectures.

Running

Running zerotier-one with -h option will show help.

On Linux and BSD, if you built from source, you can start the service with:

sudo ./zerotier-one -d

On most distributions, macOS, and Windows, the installer will start the service and set it up to start on boot.

A home folder for your system will automatically be created.

The service is controlled via the JSON API, which by default is available at 127.0.0.1 port 9993. We include a zerotier-cli command line utility to make API calls for standard things like joining and leaving networks. The authtoken.secret file in the home folder contains the secret token for accessing this API. See service/README.md for API documentation.

Here's where home folders live (by default) on each OS:

  • Linux: /var/lib/zerotier-one
  • FreeBSD / OpenBSD: /var/db/zerotier-one
  • Mac: /Library/Application Support/ZeroTier/One
  • Windows: \ProgramData\ZeroTier\One (That's for Windows 7. The base 'shared app data' folder might be different on different Windows versions.)

Basic Troubleshooting

For most users, it just works.

If you are running a local system firewall, we recommend adding a rules permitting zerotier. If you installed binaries for Windows this should be done automatically. Other platforms might require manual editing of local firewall rules depending on your configuration.

See the documentation site for more information.

The Mac firewall can be found under "Security" in System Preferences. Linux has a variety of firewall configuration systems and tools.

On CentOS check /etc/sysconfig/iptables for IPTables rules. For other distributions consult your distribution's documentation. You'll also have to check the UIs or documentation for commercial third party firewall applications like Little Snitch (Mac), McAfee Firewall Enterprise (Windows), etc. if you are running any of those. Some corporate environments might have centrally managed firewall software, so you might also have to contact IT.

ZeroTier One peers will automatically locate each other and communicate directly over a local wired LAN if UDP port 9993 inbound is open. If that port is filtered, they won't be able to see each others' LAN announcement packets. If you're experiencing poor performance between devices on the same physical network, check their firewall settings. Without LAN auto-location peers must attempt "loopback" NAT traversal, which sometimes fails and in any case requires that every packet traverse your external router twice.

Users behind certain types of firewalls and "symmetric" NAT devices may not able able to connect to external peers directly at all. ZeroTier has limited support for port prediction and will attempt to traverse symmetric NATs, but this doesn't always work. If P2P connectivity fails you'll be bouncing UDP packets off our relay servers resulting in slower performance. Some NAT router(s) have a configurable NAT mode, and setting this to "full cone" will eliminate this problem. If you do this you may also see a magical improvement for things like VoIP phones, Skype, BitTorrent, WebRTC, certain games, etc., since all of these use NAT traversal techniques similar to ours.

If a firewall between you and the Internet blocks ZeroTier's UDP traffic, you will fall back to last-resort TCP tunneling to rootservers over port 443 (https impersonation). This will work almost anywhere but is very slow compared to UDP or direct peer to peer connectivity.

Additional help can be found in our knowledge base.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].