All Projects → jamboree → Co2

jamboree / Co2

A C++ await/yield emulation library for stackless coroutine

Projects that are alternatives of or similar to Co2

ProtoPromise
Robust and efficient library for management of asynchronous operations in C#/.Net.
Stars: ✭ 20 (-92.81%)
Mutual labels:  coroutines, concurrency, await
Concurrencpp
Modern concurrency for C++. Tasks, executors, timers and C++20 coroutines to rule them all
Stars: ✭ 340 (+22.3%)
Mutual labels:  concurrency, coroutines, await
Genawaiter
Stackless generators on stable Rust.
Stars: ✭ 263 (-5.4%)
Mutual labels:  await, generator
P Map
Map over promises concurrently
Stars: ✭ 639 (+129.86%)
Mutual labels:  concurrency, await
Zewo
Lightweight library for web server applications in Swift on macOS and Linux powered by coroutines.
Stars: ✭ 1,856 (+567.63%)
Mutual labels:  concurrency, coroutines
Umka Lang
Umka: a statically typed embeddable scripting language
Stars: ✭ 308 (+10.79%)
Mutual labels:  concurrency, coroutines
Swoole Src
🚀 Coroutine-based concurrency library for PHP
Stars: ✭ 17,175 (+6078.06%)
Mutual labels:  concurrency, coroutines
Tascalate Concurrent
Implementation of blocking (IO-Bound) cancellable java.util.concurrent.CompletionStage and related extensions to java.util.concurrent.ExecutorService-s
Stars: ✭ 144 (-48.2%)
Mutual labels:  concurrency, async-programming
Recoil
Asynchronous coroutines for PHP 7.
Stars: ✭ 765 (+175.18%)
Mutual labels:  coroutines, generator
Polyel-Framework
⚡️ Voltis Core: A PHP framework based on Swoole from the ground up
Stars: ✭ 22 (-92.09%)
Mutual labels:  coroutines, concurrency
think-async
🌿 Exploring cooperative concurrency primitives in Python
Stars: ✭ 178 (-35.97%)
Mutual labels:  coroutines, concurrency
Boson
A C++14 framework for asynchronous I/O, cooperative multitasking and green threads scheduling
Stars: ✭ 154 (-44.6%)
Mutual labels:  coroutines, async-programming
Unityfx.async
Asynchronous operations (promises) for Unity3d.
Stars: ✭ 143 (-48.56%)
Mutual labels:  coroutines, async-programming
May
rust stackful coroutine library
Stars: ✭ 909 (+226.98%)
Mutual labels:  coroutines, generator
Jacob
A lightweight library to provide coroutines in Java
Stars: ✭ 14 (-94.96%)
Mutual labels:  generator, coroutines
Swimmer
🏊 Swimmer - An async task pooling and throttling utility for JS
Stars: ✭ 94 (-66.19%)
Mutual labels:  concurrency, await
Groupco
PHP的服务化框架。适用于Api、Http Server、Rpc Server;帮助原生PHP项目转向微服务化。出色的性能与支持高并发的协程相结合
Stars: ✭ 473 (+70.14%)
Mutual labels:  coroutines, generator
Swiftcoroutine
Swift coroutines for iOS, macOS and Linux.
Stars: ✭ 690 (+148.2%)
Mutual labels:  coroutines, await
ComposableAsync
Create, compose and inject asynchronous behaviors in .Net Framework and .Net Core.
Stars: ✭ 28 (-89.93%)
Mutual labels:  concurrency, async-programming
unity-async-tweens
Tween Extension to Unity-AsyncRoutines
Stars: ✭ 16 (-94.24%)
Mutual labels:  coroutines, await

CO2 - Coroutine II Try it online

A header-only C++ stackless coroutine emulation library, providing interface close to N4286.

Requirements

Overview

Many of the concepts are similar to N4286, if you're not familiar with the proposal, please read the paper first.

A coroutine written in this library looks like below:

auto function(Args... args) CO2_BEG(return_type, (args...), locals...)
{
    <coroutine-body>
} CO2_END

function is really just a plain-old function, you can forward declare it as usual:

auto function(Args... args) -> return_type;
return_type function(Args... args); // same as above

Of course, lambda expressions can be used as well:

[](Args... args) CO2_BEG(return_type, (args...), locals...)
{
    <coroutine-body>
} CO2_END

The coroutine body has to be surrounded with 2 macros: CO2_BEG and CO2_END.

The macro CO2_BEG requires you to provide some parameters:

  • return-type - the function's return-type, e.g. co2::task<>
  • captures - a list of comma separated args with an optional new clause, e.g. (a, b) new(alloc)
  • locals - a list of local-variable definitions, e.g. int a;

If there's no captures and locals, it looks like:

CO2_BEG(return_type, ())

You can intialize the local variables as below:

auto f(int i) CO2_BEG(return_type, (i),
    int i2 = i * 2;
    std::string msg{"hello"};
)
{
    // coroutine-body
} CO2_END

Note that the () initializer cannot be used here, e.g. int i2(i * 2);, due to some emulation restrictions. Besides, auto deduced variable cannot be used directly, i.e. auto var{expr};, you have to use CO2_AUTO(var, expr); instead.

Note that in this emulation, local variables intialization happens before initial_suspend, and if any exception is thrown during the intialization, set_exception won't be called, instead, the exception will propagate to the caller directly.

By default, the library allocates memory for coroutines using std::allocator, you can specify the allocator by appending the new clause after the args-list, for example:

template<class Alloc>
auto coro(Alloc alloc, int i) CO2_BEG(return_type, (i) new(alloc))

The alloc doesn't have to appear in the args-list if it's not used inside the coroutine-body. The new clause accepts an expression that evaluates to an Allocator, it's not restricted to identifiers as in the args-list.

Inside the coroutine body, there are some restrictions:

  • local variables with automatic storage cannot cross suspend-resume points - you should specify them in local variables section of CO2_BEG as described above
  • return should be replaced with CO2_RETURN/CO2_RETURN_FROM/CO2_RETURN_LOCAL
  • try-catch block surrouding suspend-resume points should be replaced with CO2_TRY & CO2_CATCH
  • identifiers starting with _co2_ are reserved for this library

After defining the coroutine body, remember to close it with CO2_END.

await & yield

In CO2, await is implemented as a statement instead of an expression due to the emulation limitation, and it has 4 variants: CO2_AWAIT, CO2_AWAIT_SET, CO2_AWAIT_LET and CO2_AWAIT_RETURN.

  • CO2_AWAIT(expr)

Equivalent to await expr.

  • CO2_AWAIT_SET(var, expr)

Equivalent to var = await expr.

  • CO2_AWAIT_LET(var-decl, expr, body)

This allows you bind the awaited result to a temporary and do something to it.

CO2_AWAIT_LET(auto i, task,
{
    doSomething(i);
});
  • CO2_AWAIT_RETURN(expr)

Equivalent to return await expr.

  • CO2_AWAIT_APPLY(f, expr)

Equivalent to f(await expr), where f can be a unary function or macro.

Note - If your compiler supports Statement Expression extension (e.g. GCC & Clang), you can use CO2_AWAIT as an expression. However, don't use more than one CO2_AWAIT in a single statement, and don't use it as an argument of a function in company with other arguments.

  • CO2_YIELD(expr)

Equivalent to CO2_AWAIT(<this-promise>.yield_value(expr)), as how yield is defined in N4286.

  • CO2_SUSPEND(fn)

Suspend the coroutine with the callable object fn. This signature of fn is the same as await_suspend.

The fact that await in CO2 is not an expression has an implication on object lifetime, consider this case:

await something{temporaries} and something holds references to temporaries.

It's safe if await is an expression as in N4286, but in CO2, CO2_AWAIT(something{temporaries}) is an emulated statement, the temporaries will go out of scope.

Besides, the awaiter itself has to be stored somewhere, by default, CO2 reserves (sizeof(pointer) + sizeof(int)) * 2 bytes for that, if the size of awaiter is larger than that, dynamic allocation will be used. If the default size is too large or too small for you, you can specify the desired size with CO2_TEMP_SIZE anywhere in the local variables section:

auto f() CO2_BEG(return_type, (),
    CO2_TEMP_SIZE(bytes);
)
{
    ...
} CO2_END

If you want to avoid dynamic allocation, you can define CO2_WARN_DYN_ALLOC to turn on dynamic allocation warning and enlarge CO2_TEMP_SIZE accordingly.

Replacements for normal language constructs

Sometimes you can't use the normal language constructs directly, in such cases, you need to use the macro replacements instead.

return

  • return -> CO2_RETURN()
  • return non-void-expr -> CO2_RETURN(non-void-expr)
  • return maybe-void-expr -> CO2_RETURN_FROM(maybe-void-expr) (useful in generic code)
  • return local-variable -> CO2_RETURN_LOCAL(local-variable) (RV w/o explicit move)

try-catch

Needed only if the try-block is involved with the suspend-resume points.

CO2_TRY {...}
CO2_CATCH (std::runtime_error& e) {...}
catch (std::exception& e) {...}

Note that only the first catch clause needs to be spelled as CO2_CATCH, the subsequent ones should use the plain catch.

switch-case

Needed only if the switch-body is involved with the suspend-resume points. There are 2 variants:

  • CO2_SWITCH
  • CO2_SWITCH_CONT - use when switch-body contains continue.
CO2_SWITCH (which,
case 1,
(
    ...
),
case N,
(
    ...
),
default,
(
    ...
))

Note that break is still needed if you don't want the control flow to fall through the subsequent cases, also note that continue cannot be used in CO2_SWITCH to continue the outer loop, use CO2_SWITCH_CONT instead in that case.

Difference from N4286

  • Unlike coroutine_handle in N4286 which has raw-pointer semantic (i.e. no RAII), coroutine has unique-semantic (move-only).
  • coroutine_traits depends on return_type only.

Additional customization points for promise_type

  • void cancel()

This allows you specify the behavior of the coroutine when it is cancelled (i.e. when cancellation_requested() returns true or coroutine is reset).

  • bool try_suspend()

This is called before the coroutine is suspended, if it returns false, the coroutine won't be suspended, instead, it will be cancelled. However, it won't be called for final_suspend.

  • bool try_resume()

This is called before the coroutine is resumed, if it returns false, the coroutine won't be resumed, instead, it will be detached.

  • bool try_cancel()

This is called before the coroutine is reset, if it returns false, the coroutine won't be cancelled, instead, it will be detached.

Reference

Headers

  • #include <co2/coroutine.hpp>
  • #include <co2/generator.hpp>
  • #include <co2/recursive_generator.hpp>
  • #include <co2/task.hpp>
  • #include <co2/shared_task.hpp>
  • #include <co2/lazy_task.hpp>
  • #include <co2/sync/event.hpp>
  • #include <co2/sync/mutex.hpp>
  • #include <co2/sync/work_group.hpp>
  • #include <co2/sync/when_all.hpp>
  • #include <co2/sync/when_any.hpp>
  • #include <co2/blocking.hpp>
  • #include <co2/adapted/boost_future.hpp>
  • #include <co2/adapted/boost_optional.hpp>
  • #include <co2/utility/stack_allocator.hpp>

Macros

  • CO2_BEG
  • CO2_END
  • CO2_AWAIT
  • CO2_AWAIT_SET
  • CO2_AWAIT_LET
  • CO2_AWAIT_RETURN
  • CO2_AWAIT_APPLY
  • CO2_YIELD
  • CO2_SUSPEND
  • CO2_RETURN
  • CO2_RETURN_FROM
  • CO2_RETURN_LOCAL
  • CO2_TRY
  • CO2_CATCH
  • CO2_SWITCH
  • CO2_TEMP_SIZE
  • CO2_AUTO

Classes

  • co2::coroutine_traits<R>
  • co2::coroutine<Promise>
  • co2::generator<T>
  • co2::recursive_generator<T>
  • co2::task<T>
  • co2::shared_task<T>
  • co2::lazy_task<T>
  • co2::event
  • co2::mutex
  • co2::work_group
  • co2::suspend_always
  • co2::suspend_never
  • co2::stack_manager
  • co2::stack_buffer<Bytes>
  • co2::stack_allocator<T>

Example

Generator

Define a generator

auto range(int i, int e) CO2_BEG(co2::generator<int>, (i, e))
{
    for ( ; i != e; ++i)
        CO2_YIELD(i);
} CO2_END

For those interested in the black magic, here is the preprocessed output (formatted for reading).

Use a generator

for (auto i : range(1, 10))
{
    std::cout << i << ", ";
}

Recursive Generator

Same example as above, using recursive_generator with custom allocator:

template<class Alloc>
auto recursive_range(Alloc alloc, int a, int b)
CO2_BEG(co2::recursive_generator<int>, (alloc, a, b) new(alloc),
    int n = b - a;
)
{
    if (n <= 0)
        CO2_RETURN();

    if (n == 1)
    {
        CO2_YIELD(a);
        CO2_RETURN();
    }

    n = a + n / 2;
    CO2_YIELD(recursive_range(alloc, a, n));
    CO2_YIELD(recursive_range(alloc, n, b));
} CO2_END

We use stack_allocator here:

co2::stack_buffer<64 * 1024> buf;
co2::stack_allocator<> alloc(buf);
for (auto i : recursive_range(alloc, 1, 10))
{
    std::cout << i << ", ";
}

Task scheduling

It's very easy to write a generic task that can be used with different schedulers. For example, a fib task that works with concurrency::task_group and tbb::task_group can be defined as below:

template<class Scheduler>
auto fib(Scheduler& sched, int n) CO2_BEG(co2::task<int>, (sched, n),
    co2::task<int> a, b;
)
{
    // Schedule the continuation.
    CO2_SUSPEND([&](co2::coroutine<>& c) { sched.run([h = c.detach()]{ co2::coroutine<>{h}(); }); });
    // From now on, the code is executed on the Scheduler.
    if (n >= 2)
    {
        a = fib(sched, n - 1);
        b = fib(sched, n - 2);
        CO2_AWAIT_SET(n, a);
        CO2_AWAIT_APPLY(n +=, b);
    }
    CO2_RETURN(n);
} CO2_END

PPL Usage

concurrency::task_group sched;
auto val = fib(sched, 16);
std::cout << "ans: " << co2::get(val);
sched.wait();

TBB Usage

tbb::task_group sched;
auto val = fib(sched, 16);
std::cout << "ans: " << co2::get(val);
sched.wait();

ASIO echo server

This example uses the sister library act to change ASIO style callback into await.

auto session(asio::ip::tcp::socket sock) CO2_BEG(void, (sock),
    char buf[1024];
    std::size_t len;
    act::error_code ec;
)
{
    CO2_TRY
    {
        std::cout << "connected: " << sock.remote_endpoint() << std::endl;
        for ( ; ; )
        {
            CO2_AWAIT_SET(len, act::read_some(sock, asio::buffer(buf), ec));
            if (ec == asio::error::eof)
                CO2_RETURN();
            CO2_AWAIT(act::write(sock, asio::buffer(buf, len)));
        }
    }
    CO2_CATCH (std::exception& e)
    {
        std::cout << "error: " << sock.remote_endpoint() << ": " << e.what() << std::endl;
    }
} CO2_END

auto server(asio::io_service& io, unsigned short port) CO2_BEG(void, (io, port),
    asio::ip::tcp::endpoint endpoint{asio::ip::tcp::v4(), port};
    asio::ip::tcp::acceptor acceptor{io, endpoint};
    asio::ip::tcp::socket sock{io};
)
{
    std::cout << "server running at: " << endpoint << std::endl;
    for ( ; ; )
    {
        CO2_AWAIT(act::accept(acceptor, sock));
        session(std::move(sock));
    }
} CO2_END

Performance

The overhead of context-switch. See benchmark.cpp.

Sample run (VS2015 Update 3, boost 1.63.0, 64-bit release build):

Run on (4 X 3200 MHz CPU s)
Benchmark                  Time           CPU Iterations
--------------------------------------------------------
bench_coroutine2         82 ns         80 ns    8960000
bench_co2                  6 ns          6 ns  112000000
bench_msvc                 5 ns          5 ns  112000000

Lower is better.

benchmark

License

Copyright (c) 2015-2018 Jamboree

Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].