All Projects → sarulabs → Di

sarulabs / Di

Licence: mit
Dependency injection container in go (golang)

Programming Languages

go
31211 projects - #10 most used programming language
golang
3204 projects

Projects that are alternatives of or similar to Di

Di
psr/container implementation for humans
Stars: ✭ 69 (-82.31%)
Mutual labels:  dependency-injection, di, container
Reflex
Minimal dependency injection framework for Unity
Stars: ✭ 263 (-32.56%)
Mutual labels:  dependency-injection, container, di
Hiboot
hiboot is a high performance web and cli application framework with dependency injection support
Stars: ✭ 150 (-61.54%)
Mutual labels:  dependency-injection, di, container
Mydi
moved to https://github.com/cekta/di
Stars: ✭ 21 (-94.62%)
Mutual labels:  dependency-injection, di, container
Container Ioc
Inversion of Control container & Dependency Injection for Javascript and Node.js apps powered by Typescript.
Stars: ✭ 89 (-77.18%)
Mutual labels:  dependency-injection, di, container
Di
PSR-11 compatible DI container and injector
Stars: ✭ 141 (-63.85%)
Mutual labels:  dependency-injection, di, container
waiter
Dependency injection, Inversion of control container for rust with compile time binding.
Stars: ✭ 71 (-81.79%)
Mutual labels:  dependency-injection, container, di
microcore
.NET Core framework for inter-service communication
Stars: ✭ 24 (-93.85%)
Mutual labels:  dependency-injection, container
definject
Unobtrusive Dependency Injector for Elixir
Stars: ✭ 46 (-88.21%)
Mutual labels:  dependency-injection, di
inject
[Archived] See https://github.com/goava/di.
Stars: ✭ 49 (-87.44%)
Mutual labels:  dependency-injection, di
CNeptune
CNeptune improve productivity & efficiency by urbanize .net module with meta-code to lay foundation for frameworks
Stars: ✭ 30 (-92.31%)
Mutual labels:  container, di
swift-di-explorations
Functional DI explorations in Swift
Stars: ✭ 28 (-92.82%)
Mutual labels:  dependency-injection, di
vesselize
⛵ A JavaScript IoC container that works seamlessly with Vue.js and React.
Stars: ✭ 22 (-94.36%)
Mutual labels:  dependency-injection, di
di
🛠 A full-featured dependency injection container for go programming language.
Stars: ✭ 156 (-60%)
Mutual labels:  dependency-injection, di
dingo
Generated dependency injection containers in go (golang)
Stars: ✭ 75 (-80.77%)
Mutual labels:  dependency-injection, container
noicejs
extremely thin async dependency injection
Stars: ✭ 16 (-95.9%)
Mutual labels:  dependency-injection, di
Container
🚀 PHP Service Container with fast and cachable dependency injection.
Stars: ✭ 28 (-92.82%)
Mutual labels:  dependency-injection, container
lightsaber
Compile time dependency injection framework for JVM languages. Especially for Kotlin.
Stars: ✭ 119 (-69.49%)
Mutual labels:  dependency-injection, di
Solid
Книга о принципах объектно-ориентированного дизайна SOLID
Stars: ✭ 280 (-28.21%)
Mutual labels:  dependency-injection, di
Getx
Open screens/snackbars/dialogs/bottomSheets without context, manage states and inject dependencies easily with Get.
Stars: ✭ 5,578 (+1330.26%)
Mutual labels:  framework, dependency-injection

DI

Dependency injection framework for go programs (golang).

DI handles the life cycle of the objects in your application. It creates them when they are needed, resolves their dependencies and closes them properly when they are no longer used.

If you do not know if DI could help improving your application, learn more about dependency injection and dependency injection containers:

There is also an Examples section at the end of the documentation.

DI is focused on performance. It does not rely on reflection.

Table of contents

Build Status go.dev reference Coverage Status Maintainability codebeat goreport

Basic usage

Object definition

A Definition contains at least the Name of the object and a Build function to create the object.

di.Def{
    Name: "my-object",
    Build: func(ctn di.Container) (interface{}, error) {
        return &MyObject{}, nil
    },
}

The definition can be added to a Builder with the Add method:

builder, _ := di.NewBuilder()

builder.Add(di.Def{
    Name: "my-object",
    Build: func(ctn di.Container) (interface{}, error) {
        return &MyObject{}, nil
    },
})

If you have an already built object to put in the container, you can use the Set shortcut:

obj := &MyObject{}

builder, _ := di.NewBuilder()
builder.Set("my-object", obj)

Note that you can override a definition by adding a definition with the same name. This could be useful in some contexts (for example in unit tests to mock a dependency):

builder.Set("my-object", "A")

// override the previous definition
builder.Add(di.Def{
    Name: "my-object",
    Build: func(ctn di.Container) (interface{}, error) {
        return "B", nil
    },
})

// override the definition again, as if the two previous ones never existed
builder.Set("my-object", "C")

Object retrieval

Once the definitions have been added to a Builder, the Builder can generate a Container. This Container will provide the objects defined in the Builder.

ctn := builder.Build() // create the container
obj := ctn.Get("my-object").(*MyObject) // retrieve the object

The Get method returns an interface{}. You need to cast the interface before using the object.

By default the objects are shared that means what they stored as singletons in the Container. You will retrieve the exact same object every time you call the Get method on the same Container. The Build function will only be called once. In case when you don't want the objects to be shared set the Unshared property of object definition to true.

Definitions and dependencies

The Build function can also use the Get method of the Container. That allows to build objects that depend on other objects defined in the Container.

di.Def{
    Name: "object-with-dependency",
    Build: func(ctn di.Container) (interface{}, error) {
        return &MyObjectWithDependency{
            Object: ctn.Get("my-object").(*MyObject),
        }, nil
    },
}

You can not create a cycle in the definitions (A needs B and B needs A). If that happens, an error will be returned at the time of the creation of the object.

Scopes

The principle

Definitions can also have a scope. They can be useful in request based applications, like a web application.

di.Def{
    Name: "my-object",
    Scope: di.Request,
    Build: func(ctn di.Container) (interface{}, error) {
        return &MyObject{}, nil
    },
}

The available scopes are defined when the Builder is created:

builder, err := di.NewBuilder(di.App, di.Request)

Scopes are defined from the more generic to the more specific (eg: AppRequestSubRequest). If no scope is given to NewBuilder, the Builder is created with the three default scopes: di.App, di.Request and di.SubRequest. These scopes should be enough almost all the time.

The containers belong to one of these scopes. A container may have a parent in a more generic scope and children in a more specific scope. The Builder generates a Container in the most generic scope. Then the Container can generate children in the next scope thanks to the SubContainer method.

A container is only able to build objects defined in its own scope, but it can retrieve objects in a more generic scope thanks to its parent. For example a Request container can retrieve an App object, but an App container can not retrieve a Request object.

If a Definition does not have a scope, the most generic scope will be used.

Scopes in practice

// Create a Builder with the default scopes (App, Request, SubRequest).
builder, _ := di.NewBuilder()

// Define an object in the App scope.
builder.Add(di.Def{
    Name: "app-object",
    Scope: di.App, // this line is optional, di.App is the default scope
    Build: func(ctn di.Container) (interface{}, error) {
        return &MyObject{}, nil
    },
})

// Define an object in the Request scope.
builder.Add(di.Def{
    Name: "request-object",
    Scope: di.Request,
    Build: func(ctn di.Container) (interface{}, error) {
        return &MyObject{}, nil
    },
})

// Build creates a Container in the most generic scope (App).
app := builder.Build()

// The App Container can create sub-containers in the Request scope.
req1, _ := app.SubContainer()
req2, _ := app.SubContainer()

// app-object can be retrieved from the three containers.
// The retrieved objects are the same: o1 == o2 == o3.
// The object is stored in app.
o1 := app.Get("app-object").(*MyObject)
o2 := req1.Get("app-object").(*MyObject)
o3 := req2.Get("app-object").(*MyObject)

// request-object can only be retrieved from req1 and req2.
// The retrieved objects are not the same: o4 != o5.
// o4 is stored in req1, and o5 is stored in req2.
o4 := req1.Get("request-object").(*MyObject)
o5 := req2.Get("request-object").(*MyObject)

More graphically, the containers could be represented like this:

The App container can only get the App object. A Request container or a SubRequest container can get either the App object or the Request object, possibly by using their parent. The objects are built and stored in containers that have the same scope. They are only created when they are requested.

Scopes and dependencies

If an object depends on other objects defined in the container, the scopes of the dependencies must be either equal or more generic compared to the object scope.

For example the following definitions are not valid:

di.Def{
    Name: "request-object",
    Scope: di.Request,
    Build: func(ctn di.Container) (interface{}, error) {
        return &MyObject{}, nil
    },
}

di.Def{
    Name: "object-with-dependency",
    Scope: di.App, // NOT ALLOWED !!! should be di.Request or di.SubRequest
    Build: func(ctn di.Container) (interface{}, error) {
        return &MyObjectWithDependency{
            Object: ctn.Get("request-object").(*MyObject),
        }, nil
    },
}

Container deletion

A definition can also have a Close function.

di.Def{
    Name: "my-object",
    Scope: di.App,
    Build: func(ctn di.Container) (interface{}, error) {
        return &MyObject{}, nil
    },
    Close: func(obj interface{}) error {
        // assuming that MyObject has a Close method that returns an error
        return obj.(*MyObject).Close() 
    },
}

This function is called when the Delete method is called on a Container.

// Create the Container.
app := builder.Build()

// Retrieve an object.
obj := app.Get("my-object").(*MyObject)

// Delete the Container, the Close function will be called on obj.
app.Delete()

Delete closes all the objects stored in the Container. Once a Container has been deleted, it becomes unusable.

It is important to always use Delete even if the objects definitions do not have a Close function. It allows to free the memory taken by the Container.

There are actually two delete methods: Delete and DeleteWithSubContainers

DeleteWithSubContainers deletes the children of the Container and then the Container. It does this right away. Delete is a softer approach. It does not delete the children of the Container. Actually it does not delete the Container as long as it still has a child alive. So you have to call Delete on all the children. The parent Container will be deleted when Delete is called on the last child.

You probably want to use Delete and close the children manually. DeleteWithSubContainers can cause errors if the parent is deleted while its children are still used.

Methods to retrieve an object

When a container is asked to retrieve an object, it starts by checking if the object has already been created. If it has, the container returns the already built instance of the object. Otherwise it uses the Build function of the associated definition to create the object. It returns the object, but also keeps a reference to be able to return the same instance if the object is requested again.

A container can only build objects defined in the same scope. If the container is asked to retrieve an object that belongs to a different scope. It forwards the request to its parent.

There are three methods to retrieve an object: Get, SafeGet and Fill.

Get

Get returns an interface that can be cast afterwards. If the object can not be created, the Get function panics.

obj := ctn.Get("my-object").(*MyObject)

SafeGet

Get is an easy way to retrieve an object. The problem is that it can panic. If it is a problem for you, you can use SafeGet. Instead of panicking, it returns an error.

objectInterface, err := ctn.SafeGet("my-object")
object, ok := objectInterface.(*MyObject)

Fill

The third and last method to retrieve an object is Fill. It returns an error if something goes wrong like SafeGet, but it may be more practical in some situations. It uses reflection to fill the given object. Using reflection makes it is slower than SafeGet.

var object *MyObject
err := ctn.Fill("my-object", &object)

Unscoped retrieval

The previous methods can retrieve an object defined in the same scope or a more generic one. If you need an object defined in a more specific scope, you need to create a sub-container to retrieve it. For example, an App container can not create a Request object. A Request container should be created to retrieve the Request object. It is logical but not always very practical.

UnscopedGet, UnscopedSafeGet and UnscopedFill work like Get, SafeGet and Fill but can retrieve objects defined in a more generic scope. To do so, they generate sub-containers that can only be accessed internally by these three methods. To remove these containers without deleting the current container, you can call the Clean method.

builder, _ := di.NewBuilder()

builder.Add(di.Def{
    Name: "request-object",
    Scope: di.Request,
    Build: func(ctn di.Container) (interface{}, error) {
        return &MyObject{}, nil
    },
    Close: func(obj interface{}) error {
        return obj.(*MyObject).Close()
    },
})

app := builder.Build()

// app can retrieve a request-object with unscoped methods.
obj := app.UnscopedGet("request-object").(*MyObject)

// Once the objects created with unscoped methods are no longer used,
// you can call the Clean method. In this case, the Close function
// will be called on the object.
app.Clean()

Panic in Build and Close functions

Panics in Build and Close functions of a definition are recovered and converted into errors. In particular that allows you to use the Get method in a Build function.

HTTP helpers

DI includes some elements to ease its integration in a web application.

The HTTPMiddleware function can be used to inject a container in an http.Request.

// create an App container
builder, _ := NewBuilder()
builder.Add(/* some definitions */)
app := builder.Build()

handlerWithDiMiddleware := di.HTTPMiddleware(handler, app, func(msg string) {
    logger.Error(msg) // use your own logger here, it is used to log container deletion errors
})

For each http.Request, a sub-container of the app container is created. It is deleted at the end of the http request.

The container can be used in the handler:

handler := func(w http.ResponseWriter, r *http.Request) {
    // retrieve the Request container with the C function
    ctn := di.C(r)
    obj := ctn.Get("object").(*MyObject)

    // there is a shortcut to do that
    obj := di.Get(r, "object").(*MyObject)
}

The handler and the middleware can panic. Do not forget to use another middleware to recover from the panic and log the errors.

Examples

The sarulabs/di-example repository is a good example to understand how DI can be used in a web application.

More explanations about this repository can be found in this blog post:

If you do not have time to check this repository, here is a shorter example that does not use the HTTP helpers. It does not handle the errors to be more concise.

package main

import (
    "context"
    "database/sql"
    "net/http"

    "github.com/sarulabs/di"

    _ "github.com/go-sql-driver/mysql"
)

func main() {
    app := createApp()
    defer app.Delete()

    http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
        // Create a request and delete it once it has been handled.
        // Deleting the request will close the connection.
        request, _ := app.SubContainer()
        defer request.Delete()

        handler(w, r, request)
    })

    http.ListenAndServe(":8080", nil)
}

func createApp() di.Container {
    builder, _ := di.NewBuilder()

    builder.Add([]di.Def{
        {
            // Define the connection pool in the App scope.
            // There will be one for the whole application.
            Name:  "mysql-pool",
            Scope: di.App,
            Build: func(ctn di.Container) (interface{}, error) {
                db, err := sql.Open("mysql", "user:[email protected]/")
                db.SetMaxOpenConns(1)
                return db, err
            },
            Close: func(obj interface{}) error {
                return obj.(*sql.DB).Close()
            },
        },
        {
            // Define the connection in the Request scope.
            // Each request will use its own connection.
            Name:  "mysql",
            Scope: di.Request,
            Build: func(ctn di.Container) (interface{}, error) {
                pool := ctn.Get("mysql-pool").(*sql.DB)
                return pool.Conn(context.Background())
            },
            Close: func(obj interface{}) error {
                return obj.(*sql.Conn).Close()
            },
        },
    }...)

    // Returns the app Container.
    return builder.Build()
}

func handler(w http.ResponseWriter, r *http.Request, ctn di.Container) {
    // Retrieve the connection.
    conn := ctn.Get("mysql").(*sql.Conn)

    var variable, value string

    row := conn.QueryRowContext(context.Background(), "SHOW STATUS WHERE `variable_name` = 'Threads_connected'")
    row.Scan(&variable, &value)

    // Display how many connections are opened.
    // As the connection is closed when the request is deleted,
    // the value should not be be higher than the number set with db.SetMaxOpenConns(1).
    w.Write([]byte(variable + ": " + value))
}

Migration from v1

DI v2 improves error handling. It should also be faster. Migrating to v2 is highly recommended and should not be too difficult. There should not be any more changes in the API for a long time.

Renamed elements

Some elements have been renamed.

A Context is now a Container.

The Context methods SubContext, NastySafeGet, NastyGet, NastyFill have been renamed. Their new names are SubContainer, UnscopedSafeGet, UnscopedGet, and UnscopedFill.

Definition is now Def. The AddDefinition of the Builder is now Add and can take more than one definition as parameter.

Definition Tags were removed in v2.0 but they are back in v2.1.

Errors

The Close function in a definition now returns an error.

The Container methods Clean, Delete and DeleteWithSubContainers also return an error.

Get

The Get method used to return nil if it could not retrieve the object. Now it panics with the error.

Logger

The Logger does not exist anymore. The errors are now directly handled by the retrieval functions.

// remove this line if you have it
builder.Logger = ...

Builder.Set

The Set method of the builder does not exist anymore. You should use the Add method and a Def.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].