All Projects → Tessellate-Imaging → Monk_v1

Tessellate-Imaging / Monk_v1

Licence: apache-2.0
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Programming Languages

python3
1442 projects

Projects that are alternatives of or similar to Monk v1

Monk object detection
A one-stop repository for low-code easily-installable object detection pipelines.
Stars: ✭ 437 (-8.96%)
Mutual labels:  hacktoberfest, jupyter-notebook, deeplearning, computervision
Ai Series
📚 [.md & .ipynb] Series of Artificial Intelligence & Deep Learning, including Mathematics Fundamentals, Python Practices, NLP Application, etc. 💫 人工智能与深度学习实战,数理统计篇 | 机器学习篇 | 深度学习篇 | 自然语言处理篇 | 工具实践 Scikit & Tensoflow & PyTorch 篇 | 行业应用 & 课程笔记
Stars: ✭ 702 (+46.25%)
Mutual labels:  jupyter-notebook, deeplearning, machinelearning
Text summurization abstractive methods
Multiple implementations for abstractive text summurization , using google colab
Stars: ✭ 359 (-25.21%)
Mutual labels:  jupyter-notebook, deeplearning, machinelearning
All4nlp
All For NLP, especially Chinese.
Stars: ✭ 141 (-70.62%)
Mutual labels:  jupyter-notebook, deeplearning, machinelearning
Algorithmmap
建立你的算法地图:如何高效学习算法;算法工程师:从小白到专家
Stars: ✭ 47 (-90.21%)
Mutual labels:  jupyter-notebook, deeplearning, machinelearning
Deeplearningmugenknock
でぃーぷらーにんぐを無限にやってディープラーニングでDeepLearningするための実装CheatSheet
Stars: ✭ 684 (+42.5%)
Mutual labels:  jupyter-notebook, deeplearning, machinelearning
Novel Deep Learning Model For Traffic Sign Detection Using Capsule Networks
capsule networks that achieves outstanding performance on the German traffic sign dataset
Stars: ✭ 88 (-81.67%)
Mutual labels:  jupyter-notebook, deeplearning, computervision
Deeplearning
深度学习入门教程, 优秀文章, Deep Learning Tutorial
Stars: ✭ 6,783 (+1313.13%)
Mutual labels:  jupyter-notebook, deeplearning, machinelearning
Learnopencv
Learn OpenCV : C++ and Python Examples
Stars: ✭ 15,385 (+3105.21%)
Mutual labels:  jupyter-notebook, deeplearning, computervision
Monk gui
A Graphical user Interface for deep learning and computer vision over Monk Libraries
Stars: ✭ 120 (-75%)
Mutual labels:  hacktoberfest, deeplearning, machinelearning
Deep Learning With Tensorflow Book
深度学习入门开源书,基于TensorFlow 2.0案例实战。Open source Deep Learning book, based on TensorFlow 2.0 framework.
Stars: ✭ 12,105 (+2421.88%)
Mutual labels:  jupyter-notebook, deeplearning, machinelearning
Solaris
CosmiQ Works Geospatial Machine Learning Analysis Toolkit
Stars: ✭ 290 (-39.58%)
Mutual labels:  deeplearning, machinelearning, computervision
Groundbreaking-Papers
ML Research paper summaries, annotated papers and implementation walkthroughs
Stars: ✭ 90 (-81.25%)
Mutual labels:  machinelearning, deeplearning, computervision
Tensorwatch
Debugging, monitoring and visualization for Python Machine Learning and Data Science
Stars: ✭ 3,191 (+564.79%)
Mutual labels:  jupyter-notebook, deeplearning, machinelearning
Introtodeeplearning
Lab Materials for MIT 6.S191: Introduction to Deep Learning
Stars: ✭ 4,955 (+932.29%)
Mutual labels:  jupyter-notebook, deeplearning
Articles
A repository for the source code, notebooks, data, files, and other assets used in the data science and machine learning articles on LearnDataSci
Stars: ✭ 350 (-27.08%)
Mutual labels:  jupyter-notebook, machinelearning
Treelstm.pytorch
Tree LSTM implementation in PyTorch
Stars: ✭ 476 (-0.83%)
Mutual labels:  deeplearning, machinelearning
Salient Object Detection
This is tensorflow implementation for cvpr2017 paper "Deeply Supervised Salient Object Detection with Short Connections"
Stars: ✭ 397 (-17.29%)
Mutual labels:  deeplearning, computervision
Awesome Cybersecurity Datasets
A curated list of amazingly awesome Cybersecurity datasets
Stars: ✭ 380 (-20.83%)
Mutual labels:  deeplearning, machinelearning
Gocv
Go package for computer vision using OpenCV 4 and beyond.
Stars: ✭ 4,511 (+839.79%)
Mutual labels:  hacktoberfest, computervision

Monk - A computer vision toolkit for everyone Tweet

Version Build_Status


Why use Monk

  • Issue: Want to begin learning computer vision

    • Solution: Start with Monk's hands-on study roadmap tutorials
  • Issue: Multiple libraries hence multiple syntaxes to learn

    • Solution: Monk's one syntax to rule them all - pytorch, keras, mxnet, etc
  • Issue: Tough to keep track of all the trial projects while participating in a deep learning competition

    • Solution: Use monk's project management and work on multiple prototyping experiments
  • Issue: Tough to set hyper-parameters while training a classifier

    • Solution: Try out hyper-parameter analyser to find the right fit
  • Issue: Looking for a library to build quick solutions for your customer

    • Solution: Train, Infer and deploy with monk's low-code syntax


Create real-world Image Classification applications

Medical Domain Fashion Domain Autonomous Vehicles Domain
Agriculture Domain Wildlife Domain Retail Domain
Satellite Domain Healthcare Domain Activity Analysis Domain

...... For more check out the Application Model Zoo!!!!



How does Monk make image classification easy

  • Write less code and create end to end applications.
  • Learn only one syntax and create applications using any deep learning library - pytorch, mxnet, keras, tensorflow, etc
  • Manage your entire project easily with multiple experiments


For whom this library is built

  • Students
    • Seamlessly learn computer vision using our comprehensive study roadmaps
  • Researchers and Developers
    • Create and Manage multiple deep learning projects
  • Competiton participants (Kaggle, Codalab, Hackerearth, AiCrowd, etc)
    • Expedite the prototyping process and jumpstart with a higher rank


Table of Contents




Sample Showcase - Quick Mode

Create an image classifier.

#Create an experiment
ptf.Prototype("sample-project-1", "sample-experiment-1")

#Load Data
ptf.Default(dataset_path="sample_dataset/", 
             model_name="resnet18", 
             num_epochs=2)
# Train
ptf.Train()

Inference

predictions = ptf.Infer(img_name="sample.png", return_raw=True);

Compare Experiments

#Create comparison project
ctf.Comparison("Sample-Comparison-1");

#Add all your experiments
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
   
# Generate statistics
ctf.Generate_Statistics();



Installation

  • CUDA 9.0          : pip install -U monk-cuda90
  • CUDA 9.0          : pip install -U monk-cuda92
  • CUDA 10.0        : pip install -U monk-cuda100
  • CUDA 10.1        : pip install -U monk-cuda101
  • CUDA 10.2        : pip install -U monk-cuda102
  • CPU (+Mac-OS) : pip install -U monk-cpu
  • Google Colab   : pip install -U monk-colab
  • Kaggle              : pip install -U monk-kaggle

For More Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

Features

  • [x] Model Visualization
  • [ ] Pre-processed data visualization
  • [x] Learned feature visualization
  • [ ] NDimensional data input - npy - hdf5 - dicom - tiff
  • [x] Multi-label Image Classification
  • [x] Custom model development

General

  • [x] Functional Documentation
  • [x] Tackle Multiple versions of libraries
  • [x] Add unit-testing
  • [ ] Contribution guidelines
  • [x] Python pip packaging support

Backend Support

  • [x] Tensorflow 2.0 provision support with v1
  • [ ] Tensorflow 2.0 complete
  • [ ] Chainer

External Libraries

  • [ ] TensorRT Acceleration
  • [ ] Intel Acceleration
  • [ ] Echo AI - for Activation functions


Connect with the project contributors



Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].