All Projects → markkurossi → mpc

markkurossi / mpc

Licence: MIT license
Secure Multi-Party Computation (MPC) with Go. This project implements secure two-party computation with Garbled circuit protocol.

Programming Languages

go
31211 projects - #10 most used programming language
Makefile
30231 projects

Projects that are alternatives of or similar to mpc

hkdf
A standalone Java 7 implementation of HMAC-based key derivation function (HKDF) defined in RFC 5869 first described by Hugo Krawczyk. HKDF follows the "extract-then-expand" paradigm which is compatible to NIST 800-56C Rev. 1 two step KDF
Stars: ✭ 47 (+14.63%)
Mutual labels:  hmac-sha512, hmac-sha256
multi-party-eddsa
Rust implementation of multi party Ed25519 signature scheme.
Stars: ✭ 86 (+109.76%)
Mutual labels:  ed25519, multi-party-computation
BitView
A crypto portfolio written in Flutter. It supports Binance, Bittrex, HitBTC, Coinbase, Coinbase Pro and Mercatox
Stars: ✭ 50 (+21.95%)
Mutual labels:  hmac-sha512, hmac-sha256
awesome-secure-computation
Awesome list for cryptographic secure computation paper. This repo includes *Lattice*, *DifferentialPrivacy*, *MPC* and also a comprehensive summary for top conferences.
Stars: ✭ 125 (+204.88%)
Mutual labels:  mpc, oblivious-transfer
Jssha
A JavaScript/TypeScript implementation of the complete Secure Hash Standard (SHA) family (SHA-1, SHA-224/256/384/512, SHA3-224/256/384/512, SHAKE128/256, cSHAKE128/256, and KMAC128/256) with HMAC.
Stars: ✭ 2,089 (+4995.12%)
Mutual labels:  sha-256, sha-512
MOTION
An efficient, user-friendly, modular, and extensible framework for mixed-protocol secure multi-party computation with two or more parties
Stars: ✭ 59 (+43.9%)
Mutual labels:  mpc, oblivious-transfer
ADEM
TOWARDS AN AUTOMATIC TURING TEST: LEARNING TO EVALUATE DIALOGUE RESPONSES
Stars: ✭ 25 (-39.02%)
Mutual labels:  evaluator
mpc
Autonomous control of an USV using Model Predictive Control
Stars: ✭ 102 (+148.78%)
Mutual labels:  mpc
evaluator
No description or website provided.
Stars: ✭ 35 (-14.63%)
Mutual labels:  evaluator
Mpc Hc
MPC-HC's main repository. For support use our Trac: https://trac.mpc-hc.org/
Stars: ✭ 3,567 (+8600%)
Mutual labels:  mpc
simple-mpc
A GNU Emacs frontend to mpc.
Stars: ✭ 38 (-7.32%)
Mutual labels:  mpc
WeDPR-Lab-iOS-SDK
iOS SDK of WeDPR-Lab-Core; WeDPR即时可用场景式隐私保护高效解决方案核心算法组件iOS SDK
Stars: ✭ 13 (-68.29%)
Mutual labels:  mpc
booleval
Header-only C++17 library for evaluating logical expressions.
Stars: ✭ 54 (+31.71%)
Mutual labels:  evaluator
PySODEvalToolkit
PySODEvalToolkit: A Python-based Evaluation Toolbox for Salient Object Detection and Camouflaged Object Detection
Stars: ✭ 59 (+43.9%)
Mutual labels:  evaluator
conclave
Query compiler for secure multi-party computation.
Stars: ✭ 86 (+109.76%)
Mutual labels:  mpc
pianola
A declarative function composition and evaluation engine.
Stars: ✭ 18 (-56.1%)
Mutual labels:  evaluator
pbkdf2-hmac-sha256
sha256, hmac with sha256 and pbkdf2 with hmac-sha256 in one header file
Stars: ✭ 19 (-53.66%)
Mutual labels:  hmac-sha256
leibniz
Math expression parser and evaluator
Stars: ✭ 20 (-51.22%)
Mutual labels:  evaluator
jseval
Evaluate JavaScript on a URL through headless Chrome browser.
Stars: ✭ 19 (-53.66%)
Mutual labels:  evaluator
pasetors
PASETOrs: PASETO tokens in pure Rust
Stars: ✭ 46 (+12.2%)
Mutual labels:  ed25519

mpc

Secure Multi-Party Computation with Go. This project implements secure two-party computation with Garbled circuit protocol. The main components are:

  • garbled: command-line program for running MPCL programs
  • compiler: Multi-Party Computation Language (MPCL) compiler
  • circuit: garbled circuit parser, garbler, and evaluator
  • ot: oblivious transfer library

Getting started

The easiest way to experiment with the system is to compile the garbled application and use it to evaluate MPCL programs. The garbled application takes the following command line options:

  • -O: optimization level (default 1 enabling all current optimizations).
  • -circ: compile inputs to circuit format.
  • -cpuprofile: write cpu profile to the specified file.
  • -d: enable diagnostics outputs.
  • -dot: generate Graphviz DOT output.
  • -e: specifies circuit evaluator / garbler mode. The circuit evaluator creates a TCP listener and waits for garblers to connect with computation.
  • -format: specifies circuit format for the -circ output file. Possible values are: mpclc (default), bristol.
  • -i: specifies comma-separated input values for the circuit.
  • -memprofile: write memory profile to the specified file.
  • -ssa: compile MPCL input to SSA assembly.
  • -stream: streaming mode.
  • -v: enabled verbose output.

The examples directory contains various MPCL example programs which can be executed with the garbled application. For example, here's how you can run the Yao's Millionaires' Problem which can be found from the millionaire.mpcl file:

package main

func main(a, b int64) bool {
    if a > b {
        return true
    } else {
        return false
    }
}

First, start the evaluator (these examples are run in the apps/garbled directory):

$ ./garbled -e -i 800000 examples/millionaire.mpcl
 - In1: a{1,0}i64:int64
 + In2: b{1,0}i64:int64
 - Out: %_{0,1}b1:bool1
 -  In: [800000]
Listening for connections at :8080

The evaluator's input is 800000 and it is set to the circuit inputs In2. The evaluator is now waiting for garblers to connect to the TCP port :8080.

Next, let's start the garbler:

$ ./garbled -i 750000 examples/millionaire.mpcl
 + In1: a{1,0}i64:int64
 - In2: b{1,0}i64:int64
 - Out: %_{0,1}b1:bool1
 -  In: [750000]
Result[0]: false

The garbler's input is 750000 and it is set to the circuit inputs In1. The garbler connects to the evaluator's TCP port and they run the garbled circuit protocol. At the end, garbler (and evaluator) print the result of the circuit, which is this case is single bool value Result[0]:

Result[0]: false

In our example, the evaluator's argument In2 is bound to the MPCL program's b int64 argument, and garbler's In1 to a int64. Therefore, the result of the computation is false because In1=750000 <= In2=800000. If we increase the garbler's input to 900000, we see that the result is now true since the garbler's input is now bigger than the evaluator's input:

$ ./garbled -i 900000 examples/millionaire.mpcl
 + In1: a{1,0}i64:int64
 - In2: b{1,0}i64:int64
 - Out: %_{0,1}b1:bool1
 -  In: [900000]
Result[0]: true

Ed25519 Key Generation and Signature Computation

The ed25519 directory contains Ed25519 key generation and signature computation examples.

Key Generation

$ ./garbled -stream -e -v -i 0x784db0ec4ca0cf5338249e6a09139109366dca1fac2838e5f0e5a46f0e191bae,0xd0da45d3c99e756da831d1e7d696eae3fa9fe39d3b1b2618c7ff997d17777989b5cf415b114298c8b10bed0f0eff118e43ab606ab01143151dff89171307dffa,0x44bf09357e19b1f96f9cf6d9e7d25a0e8dd62d6e0d4bba2bec4c59983c7dc84d1486677b6d8837746cd948c881913c36faeaee08e8309afac58be4757a1c544e
$ ./garbled -stream -v -i 0x57c0e59c20ac7d75ef7e3188fdd7f5876abee1cab394af8125acaca9760bb54c,0x76b42e6292f4a3dc339d208481abeb9a24e08127c7cd8dbde62abcddc0c0e6f7a0f740e756b44dae137f0e7ff8eae0ceb1a962c130fdcbe8cbee3e31ab55b8dc,0xeb83eb1f5203f5b752c96264a21ff4a27fa60cf2313f5f53c3fa96e0b52a2814b786e43a3af64b66291b5b29f432cb8d5a930e31f4e6f072a6d33b861b5b5f13 examples/ed25519/keygen.mpcl
┏━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━┓
┃ Op          ┃            Time ┃      % ┃ Xfer ┃
┡━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━┩
│ Init        │      2.039289ms │  0.00% │   0B │
│ OT Init     │    248.443521ms │  0.27% │ 21kB │
│ Peer Inputs │   10.330183787s │ 11.10% │  1MB │
│ Eval        │ 1m22.462325965s │ 88.63% │ 14GB │
│ Total       │ 1m33.042992562s │        │ 14GB │
└─────────────┴─────────────────┴────────┴──────┘
Max permanent wires: 52138674, cached circuits: 23
#gates=824319227 (XOR=529672017 XNOR=28633983 AND=265892049 OR=116232 INV=4946 xor=558306000 !xor=266013227) #w=847060405
Result[0]: 8ae64963506002e267a59665e9a2e6f9348cc159be53747894478e182ece9fcb
Result[1]: 4ded80ae09692306c9659307f522f5dba1d96e48cde9f4f6e22fb340629db76aa2bee5867d009e008b6fb85902273acda8910c9a740a788f70c28ca0a3093835
Result[2]: cd5c37f4497fd56e236aa858442b3ff90f7a6401ee2186ea18d074fe93d8f9d18b582fa47a1ee0f0a9083ddd9e262b8f3c642dfad68f667f87dddd4bec80aca3

Signature Computation

$ ./garbled -stream -e -v -i 0x46eb82a021d88960fb13388b0e76ba13b84524ffe114d7f3a728b39efc185eeaa7137132182bab7504daf200d882b787ee8b9b1c9f41be9c38fb4e0ba1aff326
$ ./garbled -stream -v -i 0x4d61726b6b7520526f737369203c6d747240696b692e66693e2068747470733a2f2f7777772e6d61726b6b75726f7373692e636f6d2f,0x5e768ad83640b43d93d6c26b34021d0a0cda6bf5eb962970554d7ab074e2f4cd49bc6fef2fa4dc2f763c1f70b751b7f03d398e8930d837130426454ea52d4449 examples/ed25519/sign.mpcl
┏━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ Op          ┃            Time ┃      % ┃  Xfer ┃
┡━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩
│ Init        │      1.303611ms │  0.00% │    0B │
│ OT Init     │    131.270606ms │  0.15% │  16kB │
│ Peer Inputs │    4.123998305s │  4.69% │ 667kB │
│ Eval        │ 1m23.745891208s │ 95.16% │  15GB │
│ Total       │  1m28.00246373s │        │  15GB │
└─────────────┴─────────────────┴────────┴───────┘
Max permanent wires: 53913890, cached circuits: 25
#gates=830082709 (XOR=533261481 XNOR=28815787 AND=267491441 OR=494216 INV=19784 xor=562077268 !xor=268005441) #w=853799279
Result[0]: b71a55aece64574bedd94729a9ca95a87b5fe0a587fecf50ff0238805132c1291e08cb871016cb4f3935bd45423626f61dc648a91affda3671b19d7b28e03505

Multi-Party Computation Language (MPCL)

The multi-party computation language is heavily inspired by the Go programming language, however it is not using the Go's compiler or any other related components. The compiler is an independent implementation of the relevant parts of the Go syntax.

Compiler

The parser parses the MPCL input files, including any referenced packages, and creates an abstract syntax tree (AST).

The AST is then converted into Static Single Assignment form (SSA) where each variable is defined and assigned only once. The SSA transformation does also type checks so that all variable assignments and function call arguments and return values are checked (or converted) to be or correct type.

Types

Name Size Signed
bool 1 no
uint unspecified no
int unspecified yes
uintN N no
intN N yes
floatN N yes
stringN N no

The unsized uint and int types can be used as function arguments and return values. Their sizes are resolved during compilation time. The only exception is the main function. Its arguments must use fixed type sizes. The following example shows a MinMax function that returns the minimum and maximum arguments. This function works for all argument sizes.

func MinMax(a, b int) (int, int) {
    if a < b {
        return a, b
    } else {
        return b, a
    }
}

Builtin functions

The MPCL runtime defines the following builtin functions:

  • copy(dst, src): copies the content of the array src to dst. The function returns the number of elements copied, which is the minimum of len(src) and len(dst).
  • len(value): returns the length of the value as integer:
    • array: returns the number of array elements
    • string: returns the number of bytes in the string
  • make(type, size): creates an instance of the type type with size bits.
  • native(name, arg...): calls a builtin function name with arguments arg.... The name can specify a circuit file (*.circ) or one of the following builtin functions:
    • hamming(a, b uint) computes the bitwise hamming distance between argument values
  • size(variable): returns the bit size of the argument variable.

SSA (Static single assignment form)

package main

func main(a, b int4) int4 {
    if a > b {
        return a
    }
    return b
}

The compiler creates the following SSA form assembly:

# Input0: a{1,0}i4:int4
# Input1: b{1,0}i4:int4
# Output0: %_{0,1}i4:int4
# main#0:
	igt     a{1,0}i4 b{1,0}i4 %_{0,0}b1
	mov     a{1,0}i4 %ret0{1,1}i4
	mov     b{1,0}i4 %ret0{1,2}i4
# main.ret#0:
	phi     %_{0,0}b1 %ret0{1,1}i4 %ret0{1,2}i4 %_{0,1}i4
	gc      %_{0,0}b1
	gc      %ret0{1,1}i4
	gc      %ret0{1,2}i4
	gc      a{1,0}i4
	gc      b{1,0}i4
	ret     %_{0,1}i4

The SSA assembly (and logical circuit) form a Directed Acyclic Graph (DAG) without any mutable storage locations. This means that all alternative execution paths must be evaluate and when the program is returning its computation results, any conflicting values from different execution paths must be resolved with the branching condition. This value resolution is implemented as the phi assembly instruction, which effectively implements a MUX logical circuit:

O=(D0 XOR D1)C XOR D0
D0 D1 C D0 XOR D1 AND C XOR D0
0 0 0 0 0 0
0 1 0 1 0 0
1 0 0 1 0 1
1 1 0 0 0 1
0 0 1 0 0 0
0 1 1 1 1 1
1 0 1 1 1 0
1 1 1 0 0 1

Circuit generation

The 3rd compiler phase converts SSA form assembly into logic gate circuit. The following circuit was generated from the previous SSA form assembly:

TODO

  • Compiler
    • Incremental compiler
      • Constant folding
        • Implement arithmetics with math.big instead of int{32,64}
        • Implement using AST rewrite
        • binary expressions
        • if-blocks
        • For-loop unrolling
        • Function call and return
      • peephole optimization
        • sort blocks in topological order
        • peephole optimization over block boundaries
        • SSA aliasing is 1:1 but amov has 2:1 relation
        • variable liveness analysis for templates
      • BitShift
    • Circuit & garbling:
      • Oblivious transfer extensions
    • Misc:
      • Uninitialized variables produce unspecified values in stream mode
      • TLS for garbler-evaluator protocol
  • BMR multi-party protocol
  • Ed25519
    • Parsing Ed25519 MPCL files
      • for-range statements
      • local variables in for-loop unrolling
    • Pointer handling
      • Pointer to struct field
      • Cleanup pointer r-value handling
      • Slices are passed by value instead of by reference
      • Selecting struct members from struct pointer value
    • Compound init values must be zero-padded to full size
    • Circuit generation:
      • SSA variable liveness analysis must be optimized
    • SHA-512 message digest
      • Empty arrays should be allowed, now unspecified length
      • block = 0 sets block's type to int32
    • copy() does not work on arrays which have been make():ed
    • &base[pos][i] returns the address of the first element
    • reading from *[32]int32 returns invalid values

Benchmarks and tests

Please, see the benchmarks.md file for information about various benchmarks.

Develoment ideas

Mathematical operations

package main

func main(a, b int) (int, int) {
    q, r := a / b
    return q, r
}
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].