All Projects → polymonster → Pmfx Shader

polymonster / Pmfx Shader

Licence: mit
Cross platform shader system for HLSL, GLSL, Metal and SPIR-V.

Programming Languages

python
139335 projects - #7 most used programming language

Projects that are alternatives of or similar to Pmfx Shader

Crossshader
⚔️ A tool for cross compiling shaders. Convert between GLSL, HLSL, Metal Shader Language, or older versions of GLSL.
Stars: ✭ 113 (-53.88%)
Mutual labels:  webgl, glsl, hlsl, metal
Pmtech
Lightweight, multi-platform, data-oriented game engine.
Stars: ✭ 478 (+95.1%)
Mutual labels:  webgl, glsl, hlsl, metal
Ouzel
C++ game engine for Windows, macOS, Linux, iOS, tvOS, Android, and web browsers
Stars: ✭ 607 (+147.76%)
Mutual labels:  glsl, hlsl, metal
Shaderconductor
ShaderConductor is a tool designed for cross-compiling HLSL to other shading languages
Stars: ✭ 1,146 (+367.76%)
Mutual labels:  glsl, hlsl, metal
Krafix
GLSL cross-compiler based on glslang and SPIRV-Cross
Stars: ✭ 124 (-49.39%)
Mutual labels:  glsl, hlsl, metal
3d Game Shaders For Beginners
🎮 A step-by-step guide to implementing SSAO, depth of field, lighting, normal mapping, and more for your 3D game.
Stars: ✭ 11,698 (+4674.69%)
Mutual labels:  webgl, glsl, hlsl
Filament
Filament is a real-time physically based rendering engine for Android, iOS, Windows, Linux, macOS, and WebGL2
Stars: ✭ 13,215 (+5293.88%)
Mutual labels:  webgl, metal
Sketch
Explorations on cross-hatching, engraving, and similar non-photorealistic rendering.
Stars: ✭ 136 (-44.49%)
Mutual labels:  webgl, glsl
Fsynth
Web-based and pixels-based collaborative synthesizer
Stars: ✭ 146 (-40.41%)
Mutual labels:  webgl, glsl
Reshade
A generic post-processing injector for games and video software.
Stars: ✭ 2,285 (+832.65%)
Mutual labels:  glsl, hlsl
Glsl Optimizer
GLSL optimizer based on Mesa's GLSL compiler. Used to be used in Unity for mobile shader optimization.
Stars: ✭ 1,506 (+514.69%)
Mutual labels:  glsl, metal
Glslang
Khronos-reference front end for GLSL/ESSL, partial front end for HLSL, and a SPIR-V generator.
Stars: ✭ 2,034 (+730.2%)
Mutual labels:  glsl, hlsl
Shadered
Lightweight, cross-platform & full-featured shader IDE
Stars: ✭ 3,247 (+1225.31%)
Mutual labels:  glsl, hlsl
Herebedragons
A basic 3D scene implemented with various engines, frameworks or APIs.
Stars: ✭ 1,616 (+559.59%)
Mutual labels:  webgl, metal
Shaderc Rs
Rust bindings for the shaderc library.
Stars: ✭ 143 (-41.63%)
Mutual labels:  glsl, hlsl
Twigl
twigl.app is an online editor for One tweet shader, with gif generator and sound shader, and broadcast live coding.
Stars: ✭ 145 (-40.82%)
Mutual labels:  webgl, glsl
Spirv Vm
Virtual machine for executing SPIR-V
Stars: ✭ 173 (-29.39%)
Mutual labels:  glsl, hlsl
Gpu.js
GPU Accelerated JavaScript
Stars: ✭ 13,427 (+5380.41%)
Mutual labels:  webgl, glsl
React Regl
React Fiber Reconciler Renderer for Regl WebGL
Stars: ✭ 171 (-30.2%)
Mutual labels:  webgl, glsl
Magicshader
🔮 Tiny helper for three.js to debug and write shaders
Stars: ✭ 205 (-16.33%)
Mutual labels:  webgl, glsl

pmfx-shader

Build Status Build status

A cross platform shader language with multi-threaded offline compilation or platform shader source code generation. Output json reflection info and c++ header with your shaders structs, fx-like techniques and compile time branch evaluation via (uber-shader) "permutations".

A single file does all the shader parsing and code generation. Simple syntax changes are handled through macros and defines found in platform, so it is simple to add new features or change things to behave how you like. More complex differences between shader languages (such as Metals lack of global textures / buffers) are handled through code-generation.

pmfx currently supports a subset of shader functionality with features added on an as-needed basis, it has been used in a number of personal projects as well as some upcoming commercial projects so the feature set is fairly compehensive but by no-means complete.

This is a small part of the larger pmfx system found in pmtech, it has been moved into a separate repository to be used with other projects, if you are interested to see how pmfx shaders are integrated please take a look here.

Supported Targets

  • HLSL Shader Model 3+
  • GLSL 330+
  • GLES 310+ (WebGL 2.0)
  • SPIR-V. (Vulkan, OpenGL)
  • Metal 1.0+ (macOS, iOS, tvOS)
  • PSSL (wip)

Dependencies

Windows users need vcredist 2013 for the glsl/spirv validator.

Usage

python3 build_pmfx.py -help

--------------------------------------------------------------------------------
pmfx shader (v3) ---------------------------------------------------------------
--------------------------------------------------------------------------------
commandline arguments:
    -shader_platform <hlsl, glsl, gles, spirv, metal>
    -shader_version (optional) <shader version unless overriden in technique>
        hlsl: 3_0, 4_0 (default), 5_0
        glsl: 330 (default), 420, 450
        spirv: 420 (default), 450
        metal: 2.0 (default)
    -metal_sdk [metal only] <iphoneos, macosx, appletvos>
    -metal_min_os (optional) <9.0 - 13.0 (ios), 10.11 - 10.15 (macos)>
    -i <list of input files or directories separated by spaces>
    -o <output dir for shaders>
    -t <output dir for temp files>
    -h <output dir header file with shader structs>
    -d (optional) generate debuggable shader
    -root_dir <directory> sets working directory here
    -source (optional) (generates platform source into -o no compilation)
    -stage_in <0, 1> (optional) [metal only] (default 1) 
        uses stage_in for metal vertex buffers, 0 uses raw buffers
    -cbuffer_offset (optional) [metal only] (default 4) 
        specifies an offset applied to cbuffer locations to avoid collisions with vertex buffers
    -texture_offset (optional) [vulkan only] (default 32) 
        specifies an offset applied to texture locations to avoid collisions with buffers
    -v_flip (optional) (inserts glsl uniform to control geometry flipping)

Compiling Examples

Metal for macOS

python3 build_pmfx.py -shader_platform metal -metal_sdk macosx -metal_min_os 10.14 -shader_version 2.2 -i examples -o output/bin -h output/structs -t output/temp

Metal for iOS

python3 build_pmfx.py -shader_platform metal -metal_sdk iphoneos -metal_min_os 0.9 -shader_version 2.2 -i examples -o output/bin -h output/structs -t output/temp

SPIR-V for Vulkan

python3 build_pmfx.py -shader_platform spirv -i examples -o output/bin -h output/structs -t output/temp

HLSL for Direct3D11

python3 build_pmfx.py -shader_platform hlsl -shader_version 4_0 -i examples -o output/bin -h output/structs -t output/temp

GLSL

python3 build_pmfx.py -shader_platform glsl -shader_version 330 -i examples -o output/bin -h output/structs -t output/temp

Usage

Use mostly HLSL syntax for shaders, with some small differences:

Always use structs for inputs and outputs.

struct vs_input
{
    float4 position : POSITION;
};

struct vs_output
{
    float4 position : SV_POSITION0;
};

vs_output vs_main( vs_input input )
{
    vs_output output;
    
    output.position = input.position;
    
    return output;
}

Supported semantics and sizes

POSITION     // 32bit float
TEXCOORD     // 32bit float
NORMAL       // 32bit float
TANGENT      // 32bit float
BITANGENT    // 32bit float
BLENDWEIGHTS // 32bit float
COLOR        // 8bit unsigned int
BLENDINDICES // 8bit unsigned int

Shader resources

Due to fundamental differences accross shader languages, shader resource declarations and access have a syntax unique to pmfx. Define a block of shader_resources to allow global textures or buffers as supported in HLSL and GLSL.

shader_resources
{
    texture_2d( diffuse_texture, 0 );
    texture_2dms( float4, 2, texture_msaa_2, 0 );
};

Resource types

// texture types
texture_2d( sampler_name, layout_index );
texture_2dms( type, samples, sampler_name, layout_index );
texture_2d_array( sampler_name, layout_index );
texture_cube( sampler_name, layout_index );
texture_cube_array( sampler_name, layout_index ); // requires sm 4+, gles 400+
texture_3d( sampler_name, layout_index );

// depth formats are required for sampler compare ops
depth_2d( sampler_name, layout_index ); 
depth_2d_array( sampler_name, layout_index );

// compute shader texture types
texture_2d_r( image_name, layout_index );
texture_2d_w( image_name, layout_index );
texture_2d_rw( image_name, layout_index );
texture_3d_r( image_name, layout_index );
texture_3d_w( image_name, layout_index );
texture_3d_rw( image_name, layout_index );
texture_2d_array_r( image_name, layout_index );
texture_2d_array_w( image_name, layout_index );
texture_2d_array_rw( image_name, layout_index );

// compute shader buffer types
structured_buffer( type, name, index );
structured_buffer_rw( type, name, index );
atomic_counter(name, index);

Accessing resources

// sample texture
float4 col = sample_texture( diffuse_texture, texcoord.xy );
float4 cube = sample_texture( cubemap_texture, normal.xyz );
float4 msaa_sample = sample_texture_2dms( msaa_texture, x, y, fragment );
float4 level = sampler_texture_level( texture, texcoord.xy, mip_level);
float4 array = sampler_texture_array( texture, texcoord.xy, array_slice);
float4 array_level = sampler_texture_array_level( texture, texcoord.xy, array_slice, mip_level);

// sample compare
float shadow = sample_depth_compare( shadow_map, texcoord.xy, compare_ref);
float shadow_array = sample_depth_compare_array( shadow_map, texcoord.xy, array_slice, compare_ref);

// compute rw texture
float4 rwtex = read_texture( tex_rw, gid );
write_texture(rwtex, val, gid);

// compute structured buffer
struct val = structured_buffer[gid]; // read
structured_buffer[gid] = val;        // write

cbuffers

cbuffers are a unique kind of resource, this is just because they are so in HLSL. you can use cbuffers as you normally do in HLSL.

cbuffer per_view : register(b0)
{
    float4x4 view_matrix;
};

cbuffer per_draw_call : register(b1)
{
    float4x4 world_matrix;
};

vs_output vs_main( vs_input input )
{
    vs_output output;
    
    float4 world_pos = mul(input.position, world_matrix);
    output.position = mul(world_pos, view_matrix);
    
    return output;
}

Atomic Operations

Support for glsl, hlsl and metal compatible atomics and memory barriers is available. The atomic_counter resource type is a RWStructuredBuffer in hlsl, a atomic_uint read/write buffer in Metal and a uniform atomic_uint in GLSL.

// types
atomic_uint u;
atomic_int i;

// operations
atomic_load(atomic, original)
atomic_store(atomic, value)
atomic_increment(atomic, original)
atomic_decrement(atomic, original)
atomic_add(atomic, value, original)
atomic_subtract(atomic, value, original)
atomic_min(atomic, value, original)
atomic_max(atomic, value, original)
atomic_and(atomic, value, original)
atomic_or(atomic, value, original)
atomic_xor(atomic, value, original)
atomic_exchange(atomic, value, original)
threadgroup_barrier()
device_barrier()

// usage
shader_resources
{
    atomic_counter(counter, 0); // counter bound to index 0
}

// increments counter and stores the original value in 'index'
uint index = 0;
atomic_increment(counter, index);

Includes

Include files are supported even though some shader platforms or versions may not support them natively.

#include "libs/lighting.pmfx"
#include "libs/skinning.pmfx"
#include "libs/globals.pmfx"
#include "libs/sdf.pmfx"
#include "libs/area_lights.pmfx"

Unique pmfx features

cbuffer_offset / texture_offset

HLSL has different registers for textures, vertex buffers, cbuffers and un-ordered access views. Metal and Vulkan have some differences where the register indices are shared across different resource types. To avoid collisions in different API backends you can supply offsets using the following command line options.

Metal: -cbuffer_offset (cbuffers start binding at this offset to allow vertex buffers to be bound to the slots prior to these offsets)

Vulkan: -texture_offset (textures start binding at this point allowing uniform buffers to bind to the prior slots)

v_flip

OpenGL has different viewport co-ordinates to texture coordinate so when rendering to the backbuffer vs rendering into a render target you can get output results that are flipped in the y-axis, this can propagate it's way far into a code base with conditional "v_flips" happening during different render passes.

To solve this issue in a cross platform way, pmfx will expose a uniform bool called "v_flip" in all gl vertex shaders, this allows you to conditionally flip the y-coordinate when rendering to the backbuffer or not.

To make this work make sure you also change the winding glFrontFace(GL_CCW) to glFrontFace(GL_CW).

cbuffer padding

HLSL/Direct3D requires cbuffers to be padded to 16 bytes alignment, pmfx allows you to create cbuffers with any size and will pad the rest out for you.

Techniques

Single .pmfx file can contain multiple shader functions so you can share functionality, you can define a block of jsn in the shader to configure techniques. (jsn is a more lenient and user friendly data format similar to json).

Simply specify vs, ps or cs to select which function in the source to use for that shader stage. If no pmfx: json block is found you can still supply vs_main and ps_main which will be output as a technique named "default".

pmfx:
{    
    gbuffer:
    {
        vs: vs_main,
        ps: ps_gbuffer
    },
        
    zonly:
    {
        vs: vs_main_zonly,
        ps: ps_null
    },
}

You can also use json to specify technique constants with range and ui type.. so you can later hook them into a gui:

constants:
{
    albedo      : { type: float4, widget: colour, default: [1.0, 1.0, 1.0, 1.0] },
    roughness   : { type: float, widget: slider, min: 0, max: 1, default: 0.5 },
    reflectivity: { type: float, widget: slider, min: 0, max: 1, default: 0.3 },
}

pmfx constants

Access to technique constants is done with m_prefix.

ps_output ps_main(vs_output input)
{
    float4 col = m_albedo;
}

Inherit

You can inherit techniques by using jsn inherit feature.

gbuffer(forward_lit):
{
    vs: vs_main,
    ps: ps_gbuffer,

    permutations:
    {
        SKINNED: [31, [0,1]],
        INSTANCED: [30, [0,1]],
        UV_SCALE: [1, [0,1]]
    }
},

gbuffer inherits from forward lit, by putting the base clase inside brackets.

Permutations

Permutations provide an uber shader style compile time branch evaluation to generate optimal shaders but allowing for flexibility to share code as much as possible. The pmfx block is used here again, you can specify permutations inside a technique.

permutations:
{
    SKINNED: [31, [0,1]],
    INSTANCED: [30, [0,1]],
    UV_SCALE: [1, [0,1]]
}

The first parameter is a bit shift that we can check.. so skinned is 1<<31 and uv scale is 1<<1. The second value is number of options, so in the above example we just have on or off, but you could have a quality level 0-5 for instance.

To insert a compile time evaluated branch in code, use a colon after if / else

if:(SKINNED)
{
    float4 sp = skin_pos(input.position, input.blend_weights, input.blend_indices);
    output.position = mul( sp, vp_matrix );
}
else:
{
    output.position = mul( input.position, wvp );
}

For each permutation a shader is generated with the technique plus the permutation id. The id is generated from the values passed in the permutation object.

Adding permutations can cause the number of generated shaders to grow exponentially, pmfx will detect redundant shader combinations using md5 hashing, to re-use duplicate permutation combinations and avoid un-necessary compilation.

C++ Header

After compilation a header is output for each .pmfx file containing c struct declarations for the cbuffers, technique constant buffers and vertex inputs. You can use these sturcts to fill buffers in your c++ code and use sizeof for buffer update calls in your graphics api.

It also contains defines for the shader permutation id / flags that you can check and test against to select the correct shader permutations for a draw call (ie. skinned, instanced, etc).

namespace debug
{
    struct per_pass_view
    {
        float4x4 view_projection_matrix;
        float4x4 view_matrix;
    };
    struct per_pass_view_2d
    {
        float4x4 projection_matrix;
        float4 user_data;
    };
    #define OMNI_SHADOW_SKINNED 2147483648
    #define OMNI_SHADOW_INSTANCED 1073741824
    #define FORWARD_LIT_SKINNED 2147483648
    #define FORWARD_LIT_INSTANCED 1073741824
    #define FORWARD_LIT_UV_SCALE 2
    #define FORWARD_LIT_SSS 4
    #define FORWARD_LIT_SDF_SHADOW 8
}

JSON Reflection Info

Each .pmfx file comes along with a json file containing reflection info. This info contains the locations textures / buffers are bound to, the size of structs, vertex layout description and more, at this point please remember the output reflection info is fully compliant json, and not lightweight jsn.. this is because of the more widespread support of json.

"texture_sampler_bindings": [
    {
        "name": "gbuffer_albedo",
        "data_type": "float4",
        "fragments": 1,
        "type": "texture_2d",
        "unit": 0
    }]
   
"vs_inputs": [
    {
        "name": "position",
        "semantic_index": 0,
        "semantic_id": 1,
        "size": 16,
        "element_size": 4,
        "num_elements": 4,
        "offset": 0
    }]
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].