apachecn / Pyda 2e Zh
Licence: other
📖 [译] 利用 Python 进行数据分析 · 第 2 版
Stars: ✭ 866
Programming Languages
python
139335 projects - #7 most used programming language
Projects that are alternatives of or similar to Pyda 2e Zh
Seaborn Tutorial
This repository is my attempt to help Data Science aspirants gain necessary Data Visualization skills required to progress in their career. It includes all the types of plot offered by Seaborn, applied on random datasets.
Stars: ✭ 114 (-86.84%)
Mutual labels: data-analysis, pandas, numpy
Ai Learn
人工智能学习路线图,整理近200个实战案例与项目,免费提供配套教材,零基础入门,就业实战!包括:Python,数学,机器学习,数据分析,深度学习,计算机视觉,自然语言处理,PyTorch tensorflow machine-learning,deep-learning data-analysis data-mining mathematics data-science artificial-intelligence python tensorflow tensorflow2 caffe keras pytorch algorithm numpy pandas matplotlib seaborn nlp cv等热门领域
Stars: ✭ 4,387 (+406.58%)
Mutual labels: data-analysis, pandas, numpy
Data Analysis
主要是爬虫与数据分析项目总结,外加建模与机器学习,模型的评估。
Stars: ✭ 142 (-83.6%)
Mutual labels: data-analysis, pandas, numpy
Data Science Notebook
📖 每一个伟大的思想和行动都有一个微不足道的开始
Stars: ✭ 196 (-77.37%)
Mutual labels: data-analysis, pandas, numpy
Data-Analyst-Nanodegree
Kai Sheng Teh - Udacity Data Analyst Nanodegree
Stars: ✭ 42 (-95.15%)
Mutual labels: numpy, pandas, data-analysis
100 Pandas Puzzles
100 data puzzles for pandas, ranging from short and simple to super tricky (60% complete)
Stars: ✭ 1,382 (+59.58%)
Mutual labels: data-analysis, pandas, numpy
Awkward 1.0
Manipulate JSON-like data with NumPy-like idioms.
Stars: ✭ 203 (-76.56%)
Mutual labels: data-analysis, pandas, numpy
Mlcourse.ai
Open Machine Learning Course
Stars: ✭ 7,963 (+819.52%)
Mutual labels: data-analysis, pandas, numpy
Data-Science-Resources
A guide to getting started with Data Science and ML.
Stars: ✭ 17 (-98.04%)
Mutual labels: numpy, pandas, data-analysis
Datscan
DatScan is an initiative to build an open-source CMS that will have the capability to solve any problem using data Analysis just with the help of various modules and a vast standardized module library
Stars: ✭ 13 (-98.5%)
Mutual labels: numpy, pandas, data-analysis
Udacity-Data-Analyst-Nanodegree
Repository for the projects needed to complete the Data Analyst Nanodegree.
Stars: ✭ 31 (-96.42%)
Mutual labels: numpy, pandas, data-analysis
visions
Type System for Data Analysis in Python
Stars: ✭ 136 (-84.3%)
Mutual labels: numpy, pandas, data-analysis
data-analysis-using-python
Data Analysis Using Python: A Beginner’s Guide Featuring NYC Open Data
Stars: ✭ 81 (-90.65%)
Mutual labels: numpy, pandas, data-analysis
Data Science Hacks
Data Science Hacks consists of tips, tricks to help you become a better data scientist. Data science hacks are for all - beginner to advanced. Data science hacks consist of python, jupyter notebook, pandas hacks and so on.
Stars: ✭ 273 (-68.48%)
Mutual labels: data-analysis, pandas, numpy
Pandas Summary
An extension to pandas dataframes describe function.
Stars: ✭ 361 (-58.31%)
Mutual labels: data-analysis, pandas
Deep Learning Wizard
Open source guides/codes for mastering deep learning to deploying deep learning in production in PyTorch, Python, C++ and more.
Stars: ✭ 343 (-60.39%)
Mutual labels: pandas, numpy
Prettypandas
A Pandas Styler class for making beautiful tables
Stars: ✭ 376 (-56.58%)
Mutual labels: data-analysis, pandas
Pandastable
Table analysis in Tkinter using pandas DataFrames.
Stars: ✭ 376 (-56.58%)
Mutual labels: data-analysis, pandas
Python for data analysis 2nd chinese version
《利用Python进行数据分析·第2版》
Stars: ✭ 4,049 (+367.55%)
Mutual labels: pandas, numpy
Docker Django
A complete docker package for deploying django which is easy to understand and deploy anywhere.
Stars: ✭ 378 (-56.35%)
Mutual labels: pandas, numpy
利用 Python 进行数据分析 · 第 2 版
译者:SeanCheney
卑鄙是卑鄙者的通行证,高尚是高尚者的墓志铭。——北岛
下载本书代码(本书 GitHub 地址)(建议把代码下载下来之后,安装好 Anaconda 3.6,在目录文件夹中用 Jupyter 笔记本打开)
本书是 2017 年 10 月 20 号正式出版的,和第 1 版的不同之处有:
- 包括 Python 教程内的所有代码升级为 Python 3.6(第 1 版使用的是 Python 2.7)
- 更新了 Anaconda 和其它包的 Python 安装方法
- 更新了 Pandas 为 2017 最新版
- 新增了一章,关于更高级的 Pandas 工具,外加一些 tips
- 简要介绍了使用 StatsModels 和 scikit-learn
对有些内容进行了重新排版。(译者注 1:最大的改变是把第 1 版附录中的 Python 教程,单列成了现在的第 2 章和第 3 章,并且进行了扩充。可以说,本书第 2 版对新手更为友好了!)
(译者注 2:毫无疑问,本书是学习 Python 数据分析最好的参考书。本来想把书名直接译为《Python 数据分析》,这样更简短。但是为了尊重第 1 版的翻译,考虑到继承性,还是用老书名。这样读过第一版的老读者可以方便的用之前的书名检索到第二版。作者在写第二版的时候,有些文字是照搬第一版的。所以第二版的翻译也借鉴 copy 了第一版翻译:即,如果第二版中有和第一版相同的文字,则 copy 第一版的中文译本,觉得不妥的地方会稍加修改,剩下的不同的内容就自己翻译。这样做也是为读过第一版的老读者考虑——相同的内容可以直接跳过。)
下载
Docker
docker pull apachecn0/pyda-2e-zh
docker run -tid -p <port>:80 apachecn0/pyda-2e-zh
# 访问 http://localhost:{port} 查看文档
PYPI
pip install pyda-2e-zh
pyda-2e-zh <port>
# 访问 http://localhost:{port} 查看文档
NPM
npm install -g pyda-2e-zh
pyda-2e-zh <port>
# 访问 http://localhost:{port} 查看文档
Note that the project description data, including the texts, logos, images, and/or trademarks,
for each open source project belongs to its rightful owner.
If you wish to add or remove any projects, please contact us at [email protected].