All Projects → iamseancheney → Python_for_data_analysis_2nd_chinese_version

iamseancheney / Python_for_data_analysis_2nd_chinese_version

《利用Python进行数据分析·第2版》

Projects that are alternatives of or similar to Python for data analysis 2nd chinese version

Python Wechat Itchat
微信机器人,基于Python itchat接口功能实例展示:01-itchat获取微信好友或者微信群分享文章、02-itchat获取微信公众号文章、03-itchat监听微信公众号发送的文章、04 itchat监听微信群或好友撤回的消息、05 itchat获得微信好友信息以及表图对比、06 python打印出微信被删除好友、07 itchat自动回复好友、08 itchat微信好友个性签名词云图、09 itchat微信好友性别比例、10 微信群或微信好友撤回消息拦截、11 itchat微信群或好友之间转发消息
Stars: ✭ 216 (-94.67%)
Mutual labels:  pandas, numpy, matplotlib
Python-Matematica
Explorando aspectos fundamentais da matemática com Python e Jupyter
Stars: ✭ 41 (-98.99%)
Mutual labels:  numpy, pandas, matplotlib
Udacity-Data-Analyst-Nanodegree
Repository for the projects needed to complete the Data Analyst Nanodegree.
Stars: ✭ 31 (-99.23%)
Mutual labels:  numpy, pandas, matplotlib
Data Science Types
Mypy stubs, i.e., type information, for numpy, pandas and matplotlib
Stars: ✭ 180 (-95.55%)
Mutual labels:  pandas, numpy, matplotlib
Python-for-data-analysis
No description or website provided.
Stars: ✭ 18 (-99.56%)
Mutual labels:  numpy, pandas, matplotlib
Windrose
A Python Matplotlib, Numpy library to manage wind data, draw windrose (also known as a polar rose plot), draw probability density function and fit Weibull distribution
Stars: ✭ 208 (-94.86%)
Mutual labels:  pandas, numpy, matplotlib
The-Data-Visualization-Workshop
A New, Interactive Approach to Learning Data Visualization
Stars: ✭ 59 (-98.54%)
Mutual labels:  numpy, pandas, matplotlib
Ml Cheatsheet
A constantly updated python machine learning cheatsheet
Stars: ✭ 136 (-96.64%)
Mutual labels:  pandas, numpy, matplotlib
introduction to ml with python
도서 "[개정판] 파이썬 라이브러리를 활용한 머신 러닝"의 주피터 노트북과 코드입니다.
Stars: ✭ 211 (-94.79%)
Mutual labels:  numpy, pandas, matplotlib
datascienv
datascienv is package that helps you to setup your environment in single line of code with all dependency and it is also include pyforest that provide single line of import all required ml libraries
Stars: ✭ 53 (-98.69%)
Mutual labels:  numpy, pandas, matplotlib
Machine Learning With Python
Practice and tutorial-style notebooks covering wide variety of machine learning techniques
Stars: ✭ 2,197 (-45.74%)
Mutual labels:  pandas, numpy, matplotlib
Exploratory Data Analysis Visualization Python
Data analysis and visualization with PyData ecosystem: Pandas, Matplotlib Numpy, and Seaborn
Stars: ✭ 78 (-98.07%)
Mutual labels:  numpy, pandas, matplotlib
Opendatawrangling
공공데이터 분석
Stars: ✭ 148 (-96.34%)
Mutual labels:  pandas, numpy, matplotlib
data-analysis-using-python
Data Analysis Using Python: A Beginner’s Guide Featuring NYC Open Data
Stars: ✭ 81 (-98%)
Mutual labels:  numpy, pandas, matplotlib
Data Analysis
主要是爬虫与数据分析项目总结,外加建模与机器学习,模型的评估。
Stars: ✭ 142 (-96.49%)
Mutual labels:  pandas, numpy, matplotlib
covid-19
Data ETL & Analysis on the global and Mexican datasets of the COVID-19 pandemic.
Stars: ✭ 14 (-99.65%)
Mutual labels:  numpy, pandas, matplotlib
Data Science For Marketing Analytics
Achieve your marketing goals with the data analytics power of Python
Stars: ✭ 127 (-96.86%)
Mutual labels:  pandas, numpy, matplotlib
Machine Learning Projects
This repository consists of all my Machine Learning Projects.
Stars: ✭ 135 (-96.67%)
Mutual labels:  pandas, numpy, matplotlib
Engezny
Engezny is a python package that quickly generates all possible charts from your dataframe and saves them for you, and engezny is only supporting now uni-parameter visualization using the pie, bar and barh visualizations.
Stars: ✭ 25 (-99.38%)
Mutual labels:  numpy, pandas, matplotlib
Dimensionality-reduction-and-classification-on-Hyperspectral-Images-Using-Python
In this repository, You can find the files which implement dimensionality reduction on the hyperspectral image(Indian Pines) with classification.
Stars: ✭ 63 (-98.44%)
Mutual labels:  numpy, pandas, matplotlib

README

在简书上阅读: https://www.jianshu.com/p/04d180d90a3f

下载本书:http://www.jianshu.com/p/fad9e41c1a42 (更新为GitHub链接)

下载本书代码(本书GitHub地址):https://github.com/wesm/pydata-book (建议把代码下载下来之后,安装好Anaconda 3.6,在目录文件夹中用Jupyter notebook打开)

本书是2017年10月20号正式出版的,和第1版的不同之处有:

  • 包括Python教程内的所有代码升级为Python 3.6(第1版使用的是Python 2.7)
  • 更新了Anaconda和其它包的Python安装方法
  • 更新了Pandas为2017最新版
  • 新增了一章,关于更高级的Pandas工具,外加一些tips
  • 简要介绍了使用StatsModels和scikit-learn

对有些内容进行了重新排版。(译者注1:最大的改变是把第1版附录中的Python教程,单列成了现在的第2章和第3章,并且进行了扩充。可以说,本书第2版对新手更为友好了!)

(译者注2:毫无疑问,本书是学习Python数据分析最好的参考书。本来想把书名直接译为《Python数据分析》,这样更简短。但是为了尊重第1版的翻译,考虑到继承性,还是用老书名。这样读过第一版的老读者可以方便的用之前的书名检索到第二版。作者在写第二版的时候,有些文字是照搬第一版的。所以第二版的翻译也借鉴copy了第一版翻译:即,如果第二版中有和第一版相同的文字,则copy第一版的中文译本,觉得不妥的地方会稍加修改,剩下的不同的内容就自己翻译。这样做也是为读过第一版的老读者考虑——相同的内容可以直接跳过。)

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].