All Projects → mkearney → tbltools

mkearney / tbltools

Licence: GPL-3.0 license
🗜🔢 Tools for Working with Tibbles

Programming Languages

r
7636 projects
CSS
56736 projects

Projects that are alternatives of or similar to tbltools

Tidymv
Tidy Model Visualisation for Generalised Additive Models
Stars: ✭ 25 (-26.47%)
Mutual labels:  tidyverse, r-package
kaggler
🏁 API client for Kaggle
Stars: ✭ 50 (+47.06%)
Mutual labels:  r-package, mkearney-r-package
rreddit
𝐫⟋ Get Reddit data
Stars: ✭ 49 (+44.12%)
Mutual labels:  r-package, mkearney-r-package
datatoolbox
🎓 Data Toolbox Training
Stars: ✭ 18 (-47.06%)
Mutual labels:  tidyverse, r-package
Pkgverse
📦🔭🌠 Create your own universe of packages à la tidyverse
Stars: ✭ 108 (+217.65%)
Mutual labels:  tidyverse, r-package
tidysq
tidy processing of biological sequences in R
Stars: ✭ 29 (-14.71%)
Mutual labels:  tidyverse, tibble
datar
A Grammar of Data Manipulation in python
Stars: ✭ 142 (+317.65%)
Mutual labels:  tidyverse, tibble
modeltime.gluonts
GluonTS Deep Learning with Modeltime
Stars: ✭ 31 (-8.82%)
Mutual labels:  r-package
LandR
Landscape Ecosystem Modelling in R
Stars: ✭ 14 (-58.82%)
Mutual labels:  r-package
csv2latex
🔧 Simple script in python to convert CSV files to LaTeX table
Stars: ✭ 54 (+58.82%)
Mutual labels:  table
advanced-data-wrangling-in-R-legacy
Advanced-data-wrangling-in-R, Workshop
Stars: ✭ 14 (-58.82%)
Mutual labels:  tidyverse
index-autoload
Adds an index to the autoload in wp_options table and verifies it exists on a daily basis (using WP Cron), resulting in a more efficient database.
Stars: ✭ 18 (-47.06%)
Mutual labels:  table
VOSONDash
R Shiny application for interactive analysis of networks created by vosonSML.
Stars: ✭ 44 (+29.41%)
Mutual labels:  r-package
datastorr
Simple data versioning and distribution
Stars: ✭ 57 (+67.65%)
Mutual labels:  r-package
tabularray
Typeset tabulars and arrays with LaTeX3
Stars: ✭ 101 (+197.06%)
Mutual labels:  table
R4Econ
R Code Examples Multi-dimensional/Panel Data
Stars: ✭ 16 (-52.94%)
Mutual labels:  tidyverse
parsons
Create parsons problems to teach programming in learnr tutorials
Stars: ✭ 20 (-41.18%)
Mutual labels:  r-package
geojson
GeoJSON classes for R
Stars: ✭ 32 (-5.88%)
Mutual labels:  r-package
tidyweek
Repo dedicated to #tidyweek & Mentorship pilot
Stars: ✭ 25 (-26.47%)
Mutual labels:  tidyverse
geoknife
R tools for geo-web processing of gridded data via the Geo Data Portal. geoknife slices up gridded data according to overlap with irregular features, such as watersheds, lakes, points, etc.
Stars: ✭ 64 (+88.24%)
Mutual labels:  r-package

tbltools

Build status CRAN status Coverage status

Downloads Downloads lifecycle

Tools for Working with Tibbles

Installation

Install from CRAN with:

## install {tbltools} from CRAN
install.packages("tbltools")

Or install the development version from Github with:

## install remotes pkg if not already
if (!requireNamespace("remotes")) {
  install.packages("remotes")
}

## install from github
remotes::install_github("mkearney/tbltools")

Features

  • Tidyverse-style operability!
    • Uses non-standard evaluation for easy interactive analysis
    • Provides numerous {dplyr}-like wrangling functions:
      • slice_data(), arrange_data() filter_data(), select_data(), mutate_data(), summarise_data(), bind_rows_data(), bind_cols_data(), full_join_data(), left_join_data(), right_join_data()
  • Extremely lightweight!
    • Requires only base R–zero dependencies)
    • Installs/compiles quickly and easily
  • Simple and effective data frame printing!
    • Provides a {tibble}-like printing experience

Use

  • as_tbl_data(): Convert data frames to tibbles
## convert mtcars to tibble and create row_names variable
d <- as_tbl_data(mtcars, row_names = TRUE)
  • tbl_dat_frame(): Create data frames
    • Evaluated within data frame environment, so variables/values can be updated within the tbl_data_frame() call
## create data frame where 2 variable depends on evaluation of 1st variable
tbl_data_frame(
  x = rnorm(20),
  y = rnorm(20) + x
) %>%
  cor()
#>           x         y
#> x 1.0000000 0.7827194
#> y 0.7827194 1.0000000

Slice

  • slice_data(): Select/keep/return row positions
## select rows 1, 3, 5, 25 of data
slice_data(d, c(1, 3, 5, 25))
#> # A pseudo tibble: 4 x 12+
#>             row_names  mpg cyl disp  hp drat    wt  qsec vs am
#> 1)          Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1
#> 2)         Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1
#> 3)  Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0
#> 4)   Pontiac Firebird 19.2   8  400 175 3.08 3.845 17.05  0  0
#> +2 column(s) not printed

Compare with dplyr::slice()

same_as_dplyr(
  slice_data(d, c(1, 3, 5, 25)),
  dplyr::slice(d, c(1, 3, 5, 25))
)
#> [1] TRUE

Filter

  • filter_data(): Filter/keep/return certain rows
## count by cyl and gear
filter_data(d, gear > 3 | mpg > 30, vs == 1)
#> # A pseudo tibble: 11* x 12+
#>      row_names  mpg cyl  disp  hp drat   wt  qsec vs am gear
#> 1)  Datsun 710 22.8   4 108.0  93 3.85 2.32 18.61  1  1    4
#> 2)   Merc 240D 24.4   4 146.7  62 3.69 3.19 20.00  1  0    4
#> 3)    Merc 230 22.8   4 140.8  95 3.92 3.15 22.90  1  0    4
#> 4)    Merc 280 19.2   6 167.6 123 3.92 3.44 18.30  1  0    4
#> *7 row(s) not printed;  +1 column(s) not printed

Compare with dplyr::filter()

same_as_dplyr(
  filter_data(d, gear > 3 | mpg > 30, vs == 1),
  dplyr::filter(d, gear > 3 | mpg > 30, vs == 1)
)
#> [1] TRUE

Arrange

  • arrange_data(): Organize rows by column(s) value
## count by cyl and gear
arrange_data(d, gear, cyl)
#> # A pseudo tibble: 32* x 12+
#>             row_names  mpg cyl  disp  hp drat    wt  qsec vs am
#> 1)      Toyota Corona 21.5   4 120.1  97 3.70 2.465 20.01  1  0
#> 2)     Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0
#> 3)            Valiant 18.1   6 225.0 105 2.76 3.460 20.22  1  0
#> 4)  Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0
#> *28 row(s) not printed;  +2 column(s) not printed

Compare with dplyr::arrange()

same_as_dplyr(
  arrange_data(d, gear, cyl),
  dplyr::arrange(d, gear, cyl)
)
#> [1] TRUE

Select

  • select_data(): Select columns of data frame
## select only these columns
select_data(d, row_names:hp, -disp, gear, weight = wt)
#> # A pseudo tibble: 32* x 6
#>          row_names  mpg cyl  hp gear weight
#> 1)       Mazda RX4 21.0   6 110    4  2.620
#> 2)   Mazda RX4 Wag 21.0   6 110    4  2.875
#> 3)      Datsun 710 22.8   4  93    4  2.320
#> 4)  Hornet 4 Drive 21.4   6 110    3  3.215
#> *28 row(s) not printed

Compare with dplyr::select()

same_as_dplyr(
  select_data(d, cyl, gear, weight = wt),
  dplyr::select(d, cyl, gear, weight = wt)
)
#> [1] TRUE

Mutate

  • mutate_data(): Wrangle/create variables in data frame
## select cyl, gear, mpg columns and create new logical column for more efficient cars
d %>%
  select_data(cyl, gear, mpg) %>%
  mutate_data(eff = mpg > 20)
#> # A pseudo tibble: 32* x 4
#>     cyl gear  mpg  eff
#> 1)    6    4 21.0 TRUE
#> 2)    6    4 21.0 TRUE
#> 3)    4    4 22.8 TRUE
#> 4)    6    3 21.4 TRUE
#> *28 row(s) not printed

Compare with dplyr::mutate()

same_as_dplyr(
  d %>%
    select_data(cyl, gear, mpg) %>%
    mutate_data(eff = mpg > 20),
  d %>%
    dplyr::select(cyl, gear, mpg) %>%
    dplyr::mutate(eff = mpg > 20)
)
#> [1] TRUE

Summarise

  • summarise_data(): Wrangle/create summary variables in data frame
## select cyl, gear, mpg columns and create new logical column for more efficient cars
summarise_data(d, mpg = mean(mpg), wt = mean(wt))
#> # A pseudo tibble: 1 x 2
#>          mpg      wt
#> 1)  20.09062 3.21725

Compare with dplyr::summarise()

same_as_dplyr(
  summarise_data(d, mpg = mean(mpg), wt = mean(wt)),
  dplyr::summarise(d, mpg = mean(mpg), wt = mean(wt))
)
#> [1] TRUE

Group by

  • group_by_data(): Group observations in data frame [and then mutate and/or summarise]
## group by cyl
d %>%
  select_data(mpg:cyl, gear) %>%
  group_by_data(cyl, gear) %>%
  mutate_data(n = length(gear)) %>%
  summarise_data(
    n = unique(n),
    mpg = mean(mpg)
  )
#> # A pseudo tibble: 8 x 4
#>     cyl gear  n    mpg
#> 1)    6    4  4 19.750
#> 2)    4    4  8 26.925
#> 3)    6    3  2 19.750
#> 4)    8    3 12 15.050
#> 5)    4    3  1 21.500
#> 6)    4    5  2 28.200
#> 7)    8    5  2 15.400
#> 8)    6    5  1 19.700

Compare with dplyr::group_by()

same_as_dplyr(
  d %>%
    select_data(cyl, gear, mpg) %>%
    group_by_data(cyl) %>%
    mutate_data(n = length(gear)) %>%
    summarise_data(
      n = unique(n),
      mpg_total = sum(mpg),
      mpg = mean(mpg)
    ) %>%
    arrange_data(cyl) %>%
    select_data(cyl, mpg_total, mpg, n),
  d %>%
    dplyr::select(cyl, gear, mpg) %>%
    dplyr::group_by(cyl) %>%
    dplyr::mutate(n = length(gear)) %>%
    dplyr::summarise(
      n = unique(n),
      mpg_total = sum(mpg),
      mpg = mean(mpg)
    ) %>%
    dplyr::arrange(cyl) %>%
    dplyr::select(cyl, mpg_total, mpg, n)
)
#> [1] TRUE

Bind rows

  • bind_rows_data(): Collapse list of data frames into single data frame
## create version of data with new variable
dd <- d
dd$new_var <- sample(letters, nrow(d), replace = TRUE)

## combine multiple data sets into list
lst <- list(d, d, dd)

## bind rows into single data frame
bind_rows_data(lst, fill = TRUE)
#> # A pseudo tibble: 96* x 13+
#>          row_names  mpg cyl disp  hp drat    wt  qsec vs am gear
#> 1)       Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1    4
#> 2)   Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4
#> 3)      Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1    4
#> 4)  Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3
#> *92 row(s) not printed;  +2 column(s) not printed

Compare to dplyr::bind_rows()

same_as_dplyr(
  bind_rows_data(lst, fill = TRUE),
  dplyr::bind_rows(lst)
)
#> [1] TRUE

Joins

  • Data to compare with dplyr joins:
## mtcars data and additional cyl/new data
x <- tbltools::as_tbl_data(mtcars)
y <- data.frame(cyl = c(1, 4), new = c(1.25, 2.5))
  • left_join_data(): Join according to first (left) data frame
## join according to x
left_join_data(x, y)
#> Joining, by = "cyl"
#> # A pseudo tibble: 32* x 12
#>      mpg cyl disp  hp drat    wt  qsec vs am gear carb new
#> 1)  21.0   6  160 110 3.90 2.620 16.46  0  1    4    4  NA
#> 2)  21.0   6  160 110 3.90 2.875 17.02  0  1    4    4  NA
#> 3)  22.8   4  108  93 3.85 2.320 18.61  1  1    4    1 2.5
#> 4)  21.4   6  258 110 3.08 3.215 19.44  1  0    3    1  NA
#> *28 row(s) not printed

Compare with dplyr::left_join():

same_as_dplyr(
  left_join_data(x, y),
  dplyr::left_join(x, y)
)
#> Joining, by = "cyl"
#> Joining, by = "cyl"
#> [1] TRUE
  • right_join_data(): Join according to second (right) data frame
## join by y
right_join_data(x, y)
#> Joining, by = "cyl"
#> # A pseudo tibble: 12* x 12
#>      mpg cyl  disp hp drat   wt  qsec vs am gear carb  new
#> 1)    NA   1    NA NA   NA   NA    NA NA NA   NA   NA 1.25
#> 2)  22.8   4 108.0 93 3.85 2.32 18.61  1  1    4    1 2.50
#> 3)  24.4   4 146.7 62 3.69 3.19 20.00  1  0    4    2 2.50
#> 4)  22.8   4 140.8 95 3.92 3.15 22.90  1  0    4    2 2.50
#> *8 row(s) not printed

Compare with dplyr::left_join():

same_as_dplyr(
  right_join_data(x, y),
  dplyr::right_join(x, y)
)
#> Joining, by = "cyl"
#> Joining, by = "cyl"
#> [1] TRUE
  • full_join_data(): Join according to both data frames
## join by x and y
full_join_data(x, y)
#> Joining, by = "cyl"
#> # A pseudo tibble: 33* x 12
#>      mpg cyl disp  hp drat    wt  qsec vs am gear carb new
#> 1)  21.0   6  160 110 3.90 2.620 16.46  0  1    4    4  NA
#> 2)  21.0   6  160 110 3.90 2.875 17.02  0  1    4    4  NA
#> 3)  22.8   4  108  93 3.85 2.320 18.61  1  1    4    1 2.5
#> 4)  21.4   6  258 110 3.08 3.215 19.44  1  0    3    1  NA
#> *29 row(s) not printed

Compare with dplyr::left_join():

same_as_dplyr(
  full_join_data(x, y),
  dplyr::full_join(x, y)
)
#> Joining, by = "cyl"
#> Joining, by = "cyl"
#> [1] TRUE

Frequency tables

  • tabsort(): Count frequencies
## count by cyl and gear
tabsort(d, cyl, gear)
#> # A pseudo tibble: 9* x 4
#>     cyl gear  n   prop
#> 1)    8    3 12 0.3750
#> 2)    4    4  8 0.2500
#> 3)    6    4  4 0.1250
#> 4)    6    3  2 0.0625
#> *5 row(s) not printed
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].