All Projects → ropensci → geojson

ropensci / geojson

Licence: other
GeoJSON classes for R

Programming Languages

r
7636 projects
Makefile
30231 projects

Projects that are alternatives of or similar to geojson

Wellknown
WKT <-> GeoJSON
Stars: ✭ 15 (-53.12%)
Mutual labels:  geojson, geospatial, spatial, r-package
de9im
DE-9IM spatial predicate library implemented in Javascript.
Stars: ✭ 22 (-31.25%)
Mutual labels:  geojson, geospatial, spatial
Lawn
⛔ ARCHIVED ⛔ turf.js R client
Stars: ✭ 57 (+78.13%)
Mutual labels:  geojson, geospatial, r-package
skynet-scrub-server
Backing store for developmentseed/skynet-scrub
Stars: ✭ 13 (-59.37%)
Mutual labels:  geojson, geospatial
krawler
A minimalist (geospatial) ETL
Stars: ✭ 51 (+59.38%)
Mutual labels:  geojson, geospatial
GeoArrays.jl
Simple geographical raster interaction built on top of ArchGDAL, GDAL and CoordinateTransformations
Stars: ✭ 42 (+31.25%)
Mutual labels:  spatial, crs
Kepler
The open source full-stack geosocial network platform
Stars: ✭ 125 (+290.63%)
Mutual labels:  geojson, geospatial
deegree3
Official deegree repository providing geospatial core libraries, data access and advanced OGC web service implementations
Stars: ✭ 118 (+268.75%)
Mutual labels:  geospatial, spatial
pygeopackage
A Python package to read/write spatial data to a geopackage.
Stars: ✭ 33 (+3.13%)
Mutual labels:  geospatial, spatial
geostan
Bayesian spatial analysis
Stars: ✭ 40 (+25%)
Mutual labels:  spatial, r-package
geojson
Library for serializing the GeoJSON vector GIS file format
Stars: ✭ 171 (+434.38%)
Mutual labels:  geojson, geospatial
Php Crud Api
Single file PHP script that adds a REST API to a SQL database
Stars: ✭ 2,904 (+8975%)
Mutual labels:  geojson, geospatial
L7
🌎 Large-scale WebGL-powered Geospatial Data Visualization analysis framework which relies on Mapbox GL or AMap to render basemaps.
Stars: ✭ 2,517 (+7765.63%)
Mutual labels:  geojson, geospatial
geodaData
Data package for accessing GeoDa datasets using R
Stars: ✭ 15 (-53.12%)
Mutual labels:  spatial, r-package
Geojsonio
Convert many data formats to & from GeoJSON & TopoJSON
Stars: ✭ 132 (+312.5%)
Mutual labels:  geojson, r-package
geoflow
R engine to orchestrate and run (meta)data workflows
Stars: ✭ 28 (-12.5%)
Mutual labels:  geospatial, spatial
pyturf
A modular geospatial engine written in python
Stars: ✭ 15 (-53.12%)
Mutual labels:  geojson, geospatial
ows4R
R Interface for OGC Web-Services (OWS)
Stars: ✭ 29 (-9.37%)
Mutual labels:  geospatial, spatial
Geoswift
The Swift Geometry Engine.
Stars: ✭ 1,267 (+3859.38%)
Mutual labels:  geojson, geospatial
Geojson2h3
Conversion utilities between H3 indexes and GeoJSON
Stars: ✭ 93 (+190.63%)
Mutual labels:  geojson, geospatial

geojson

cran checks R-check R-check-fedora codecov rstudio mirror downloads cran version

geojson aims to deal only with geojson data, without requiring any of the sp/rgdal/rgeos stack. That means this package is light weight.

We've defined classes (S3) following the GeoJSON spec. These classes sort of overlap with sp's classes, but not really. There's also some overlap in GeoJSON classes with Well-Known Text (WKT) classes, but GeoJSON has a subset of WKT's classes.

The package geoops supports manipulations on the classes defined in this package. This package is used within geojsonio to make some tasks easier.

Installation

Stable CRAN version

install.packages("geojson")

Dev version

remotes::install_github("ropensci/geojson")
library("geojson")

geojson class

Essentially a character string with S3 class geojson attached to make it easy to perform operations on

x <- "{\"type\":\"FeatureCollection\",\"features\":[{\"type\":\"Feature\",\"geometry\":{\"type\":\"Point\",\"coordinates\":[-99.74,32.45]},\"properties\":{}}]}"
as.geojson(x)
#> <geojson> 
#>   type:  FeatureCollection 
#>   features (n): 1 
#>   features (geometry / length) [first 5]:
#>     Point / 2

geometrycollection

x <- '{
 "type": "GeometryCollection",
 "geometries": [
   {
     "type": "Point",
     "coordinates": [100.0, 0.0]
   },
   {
     "type": "LineString",
     "coordinates": [ [101.0, 0.0], [102.0, 1.0] ]
   }
  ]
}'
(y <- geometrycollection(x))
#> <GeometryCollection> 
#>   geometries (n): 2 
#>   geometries (geometry / length):
#>     Point / 2
#>     LineString / 2

inspect the object

get the string

y[[1]]
#> [1] "{\n \"type\": \"GeometryCollection\",\n \"geometries\": [\n   {\n     \"type\": \"Point\",\n     \"coordinates\": [100.0, 0.0]\n   },\n   {\n     \"type\": \"LineString\",\n     \"coordinates\": [ [101.0, 0.0], [102.0, 1.0] ]\n   }\n  ]\n}"

get the type

geo_type(y)
#> [1] "GeometryCollection"

pretty print the geojson

geo_pretty(y)
#> {
#>     "type": "GeometryCollection",
#>     "geometries": [
#>         {
#>             "type": "Point",
#>             "coordinates": [
#>                 100.0,
#>                 0.0
#>             ]
#>         },
#>         {
#>             "type": "LineString",
#>             "coordinates": [
#>                 [
#>                     101.0,
#>                     0.0
#>                 ],
#>                 [
#>                     102.0,
#>                     1.0
#>                 ]
#>             ]
#>         }
#>     ]
#> }
#> 

write to disk

geo_write(y, f <- tempfile(fileext = ".geojson"))
jsonlite::fromJSON(f, FALSE)
#> $type
#> [1] "GeometryCollection"
#> 
#> $geometries
#> $geometries[[1]]
#> $geometries[[1]]$type
#> [1] "Point"
#> 
#> $geometries[[1]]$coordinates
#> $geometries[[1]]$coordinates[[1]]
#> [1] 100
#> 
#> $geometries[[1]]$coordinates[[2]]
#> [1] 0
#> 
#> 
#> 
#> $geometries[[2]]
#> $geometries[[2]]$type
#> [1] "LineString"
#> 
#> $geometries[[2]]$coordinates
#> $geometries[[2]]$coordinates[[1]]
#> $geometries[[2]]$coordinates[[1]][[1]]
#> [1] 101
#> 
#> $geometries[[2]]$coordinates[[1]][[2]]
#> [1] 0
#> 
#> 
#> $geometries[[2]]$coordinates[[2]]
#> $geometries[[2]]$coordinates[[2]][[1]]
#> [1] 102
#> 
#> $geometries[[2]]$coordinates[[2]][[2]]
#> [1] 1

properties

Add properties

x <- '{ "type": "LineString", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ]}'
res <- linestring(x) %>% feature() %>% properties_add(population = 1000)
res
#> <Feature> 
#>   type:  LineString 
#>   coordinates:  [[100,0],[101,1]]

Get a property

properties_get(res, property = 'population')
#> 1000

crs

Add crs

crs <- '{
  "type": "name",
  "properties": {
     "name": "urn:ogc:def:crs:OGC:1.3:CRS84"
  }
}'
z <- x %>% feature() %>% crs_add(crs)
z
#> {
#>     "type": "Feature",
#>     "properties": {
#> 
#>     },
#>     "geometry": {
#>         "type": "LineString",
#>         "coordinates": [
#>             [
#>                 100,
#>                 0
#>             ],
#>             [
#>                 101,
#>                 1
#>             ]
#>         ]
#>     },
#>     "crs": {
#>         "type": "name",
#>         "properties": {
#>             "name": "urn:ogc:def:crs:OGC:1.3:CRS84"
#>         }
#>     }
#> }

Get crs

crs_get(z)
#> $type
#> [1] "name"
#> 
#> $properties
#> $properties$name
#> [1] "urn:ogc:def:crs:OGC:1.3:CRS84"

bbox

Add bbox

tt <- x %>% feature() %>% bbox_add()
tt
#> {
#>     "type": "Feature",
#>     "properties": {
#> 
#>     },
#>     "geometry": {
#>         "type": "LineString",
#>         "coordinates": [
#>             [
#>                 100,
#>                 0
#>             ],
#>             [
#>                 101,
#>                 1
#>             ]
#>         ]
#>     },
#>     "bbox": [
#>         100,
#>         0,
#>         101,
#>         1
#>     ]
#> }

Get bbox

bbox_get(tt)
#> [1] 100   0 101   1

geojson in data.frame's

x <- '{ "type": "Point", "coordinates": [100.0, 0.0] }'
(pt <- point(x))
#> <Point> 
#>   coordinates:  [100,0]
library("tibble")
tibble(a = 1:5, b = list(pt))
#> # A tibble: 5 x 2
#>       a b             
#>   <int> <list>        
#> 1     1 <geopoint [1]>
#> 2     2 <geopoint [1]>
#> 3     3 <geopoint [1]>
#> 4     4 <geopoint [1]>
#> 5     5 <geopoint [1]>
x <- '{ "type": "MultiLineString",
  "coordinates": [ [ [100.0, 0.0], [101.0, 1.0] ], [ [102.0, 2.0], [103.0, 3.0] ] ] }'
(mls <- multilinestring(x))
#> <MultiLineString> 
#>   no. lines:  2 
#>   no. nodes / line:  2, 2 
#>   coordinates:  [[[100,0],[101,1]],[[102,2],[103,3]]]
tibble(a = 1:5, b = list(mls))
#> # A tibble: 5 x 2
#>       a b             
#>   <int> <list>        
#> 1     1 <gmltlnst [1]>
#> 2     2 <gmltlnst [1]>
#> 3     3 <gmltlnst [1]>
#> 4     4 <gmltlnst [1]>
#> 5     5 <gmltlnst [1]>
tibble(a = 1:5, b = list(pt), c = list(mls))
#> # A tibble: 5 x 3
#>       a b              c             
#>   <int> <list>         <list>        
#> 1     1 <geopoint [1]> <gmltlnst [1]>
#> 2     2 <geopoint [1]> <gmltlnst [1]>
#> 3     3 <geopoint [1]> <gmltlnst [1]>
#> 4     4 <geopoint [1]> <gmltlnst [1]>
#> 5     5 <geopoint [1]> <gmltlnst [1]>

geobuf

Geobuf is a compact binary encoding for geographic data using protocol buffers https://github.com/mapbox/geobuf (via the protolite) package.

file <- system.file("examples/test.pb", package = "geojson")
(json <- from_geobuf(file))
#> {"type":"FeatureCollection","features":[{"type":"Feature","geometry":{"type":"Point","coordinates":[102,0.5]},"id":999,"properties":{"prop0":"value0","double":0.0123,"negative_int":-100,"positive_int":100,"negative_double":-1.2345e+16,"positive_double":1.2345e+16,"null":null,"array":[1,2,3.1],"object":{"foo":[5,6,7]}},"blabla":{"foo":[1,1,1]}},{"type":"Feature","geometry":{"type":"LineString","coordinates":[[102,0],[103,-1.1],[104,-3],[105,1]]},"id":123,"properties":{"custom1":"test","prop0":"value0","prop1":0}},{"type":"Feature","geometry":{"type":"Polygon","coordinates":[[[100,0],[101,0],[101,1],[100,1],[100,0]],[[99,10],[101,0],[100,1],[99,10]]]},"id":"test-id","properties":{"prop0":"value0","prop1":{"this":"that"}},"custom1":"jeroen"},{"type":"Feature","geometry":{"type":"MultiPolygon","coordinates":[[[[102,2],[103,2],[103,3],[102,2]]],[[[100,0],[101,0],[101,1],[100,1],[100,0]],[[100.2,0.2],[100.2,0.8],[100.2,0.2]]]]}},{"type":"Feature","geometry":{"type":"GeometryCollection","geometries":[{"type":"Point","coordinates":[100,0]},{"type":"LineString","coordinates":[[101,0],[102,1]]},{"type":"MultiPoint","coordinates":[[100,0],[101,1]]},{"type":"MultiLineString","coordinates":[[[100,0],[101,1]],[[102,2],[103,3]]]},{"type":"MultiPolygon","coordinates":[[[[102,2],[103,2],[103,3],[102,3],[102,2]]],[[[100,0],[101,0],[101,1],[100,1],[100,0]],[[100.2,0.2],[100.8,0.2],[100.8,0.8],[100.2,0.8],[100.2,0.2]]]]}]}}]}
pb <- to_geobuf(json)
class(pb)
#> [1] "raw"
f <- tempfile(fileext = ".pb")
to_geobuf(json, f)
from_geobuf(f)
#> {"type":"FeatureCollection","features":[{"type":"Feature","geometry":{"type":"Point","coordinates":[102,0.5]},"id":999,"properties":{"prop0":"value0","double":0.0123,"negative_int":-100,"positive_int":100,"negative_double":-1.2345e+16,"positive_double":1.2345e+16,"null":null,"array":[1,2,3.1],"object":{"foo":[5,6,7]}},"blabla":{"foo":[1,1,1]}},{"type":"Feature","geometry":{"type":"LineString","coordinates":[[102,0],[103,-1.1],[104,-3],[105,1]]},"id":123,"properties":{"custom1":"test","prop0":"value0","prop1":0}},{"type":"Feature","geometry":{"type":"Polygon","coordinates":[[[100,0],[101,0],[101,1],[100,1],[100,0]],[[99,10],[101,0],[100,1],[99,10]]]},"id":"test-id","properties":{"prop0":"value0","prop1":{"this":"that"}},"custom1":"jeroen"},{"type":"Feature","geometry":{"type":"MultiPolygon","coordinates":[[[[102,2],[103,2],[103,3],[102,2]]],[[[100,0],[101,0],[101,1],[100,1],[100,0]],[[100.2,0.2],[100.2,0.8],[100.2,0.2]]]]}},{"type":"Feature","geometry":{"type":"GeometryCollection","geometries":[{"type":"Point","coordinates":[100,0]},{"type":"LineString","coordinates":[[101,0],[102,1]]},{"type":"MultiPoint","coordinates":[[100,0],[101,1]]},{"type":"MultiLineString","coordinates":[[[100,0],[101,1]],[[102,2],[103,3]]]},{"type":"MultiPolygon","coordinates":[[[[102,2],[103,2],[103,3],[102,3],[102,2]]],[[[100,0],[101,0],[101,1],[100,1],[100,0]],[[100.2,0.2],[100.8,0.2],[100.8,0.8],[100.2,0.8],[100.2,0.2]]]]}]}}]}

x <- '{ "type": "Polygon",
"coordinates": [
  [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0] ]
  ]
}'
y <- polygon(x)
to_geobuf(y)
#>  [1] 10 02 18 06 2a 1a 0a 18 08 04 12 01 04 1a 11 80 84 af 5f 00 80 89 7a 00 00
#> [26] 80 89 7a ff 88 7a 00

x <- '{"type": "MultiPoint", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ] }'
y <- multipoint(x)
to_geobuf(y)
#>  [1] 10 02 18 06 2a 11 0a 0f 08 01 1a 0b 80 84 af 5f 00 80 89 7a 80 89 7a

newline-delimited GeoJSON

read nd-GeoJSON

url <- "https://raw.githubusercontent.com/ropensci/geojson/master/inst/examples/ndgeojson1.json"
f <- tempfile(fileext = ".geojsonl")
download.file(url, f)
x <- ndgeo_read(f, verbose = FALSE)
x
#> <geojson> 
#>   type:  FeatureCollection 
#>   features (n): 3 
#>   features (geometry / length) [first 5]:
#>     Point / 2
#>     Point / 2
#>     Point / 2

Write nd-GeoJSON

One would think we could take the output of ndego_read() above and pass to ndgeo_write(). However, in this example, the json is too big for jqr to handle, the underlying parser tool. So here's a smaller example:

file <- system.file("examples", "featurecollection2.geojson",
  package = "geojson")
str <- paste0(readLines(file), collapse = " ")
(x <- featurecollection(str))
#> <FeatureCollection> 
#>   type:  FeatureCollection 
#>   no. features:  3 
#>   features (1st 5):  Point, Point, Point
outfile <- tempfile(fileext = ".geojson")
ndgeo_write(x, outfile)
jsonlite::stream_in(file(outfile))
#> 
 Found 3 records...
 Imported 3 records. Simplifying...
#>      type id   properties.NOME
#> 1 Feature  0 Sec de segunrança
#> 2 Feature  1             Teste
#> 3 Feature  3 Delacorte Theater
#>                                                            properties.URL
#> 1 http://www.theatermania.com/new-york/theaters/45th-street-theatre_2278/
#> 2          http://www.bestofoffbroadway.com/theaters/47streettheatre.html
#> 3     http://www.centralpark.com/pages/attractions/delacorte-theatre.html
#>                      properties.ADDRESS1 properties.CIDADE properties.CEP
#> 1                   354 West 45th Street           Goiânia       74250010
#> 2                   304 West 47th Street          New York             NA
#> 3 Central Park - Mid-Park at 80th Street          New York             NA
#>   properties.ZIP geometry.type geometry.coordinates
#> 1             NA         Point -49.25624, -16.68961
#> 2       74250010         Point -49.27624, -16.65561
#> 3       74250010         Point -49.27726, -16.67906

Meta

  • Please report any issues or bugs.
  • License: MIT
  • Get citation information for geojson in R doing citation(package = 'geojson')
  • Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

ropensci_footer

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].