All Projects → khundman → Telemanom

khundman / Telemanom

Licence: other
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Projects that are alternatives of or similar to Telemanom

Lstm anomaly thesis
Anomaly detection for temporal data using LSTMs
Stars: ✭ 178 (-69.78%)
Mutual labels:  jupyter-notebook, time-series, lstm, anomaly-detection
Ad examples
A collection of anomaly detection methods (iid/point-based, graph and time series) including active learning for anomaly detection/discovery, bayesian rule-mining, description for diversity/explanation/interpretability. Analysis of incorporating label feedback with ensemble and tree-based detectors. Includes adversarial attacks with Graph Convolutional Network.
Stars: ✭ 641 (+8.83%)
Mutual labels:  time-series, lstm, rnn, anomaly-detection
Getting Things Done With Pytorch
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoencoders, Object Detection with YOLO v5, Build your first Neural Network, Time Series forecasting for Coronavirus daily cases, Sentiment Analysis with BERT.
Stars: ✭ 738 (+25.3%)
Mutual labels:  jupyter-notebook, time-series, lstm, anomaly-detection
Easy Deep Learning With Keras
Keras tutorial for beginners (using TF backend)
Stars: ✭ 367 (-37.69%)
Mutual labels:  jupyter-notebook, lstm, rnn
Rnn For Joint Nlu
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling" (https://arxiv.org/abs/1609.01454)
Stars: ✭ 176 (-70.12%)
Mutual labels:  jupyter-notebook, lstm, rnn
Stylenet
A cute multi-layer LSTM that can perform like a human 🎶
Stars: ✭ 187 (-68.25%)
Mutual labels:  jupyter-notebook, lstm, rnn
Chinese Chatbot
中文聊天机器人,基于10万组对白训练而成,采用注意力机制,对一般问题都会生成一个有意义的答复。已上传模型,可直接运行,跑不起来直播吃键盘。
Stars: ✭ 124 (-78.95%)
Mutual labels:  jupyter-notebook, lstm, rnn
Pytorch Seq2seq
Tutorials on implementing a few sequence-to-sequence (seq2seq) models with PyTorch and TorchText.
Stars: ✭ 3,418 (+480.31%)
Mutual labels:  jupyter-notebook, lstm, rnn
Natural Language Processing With Tensorflow
Natural Language Processing with TensorFlow, published by Packt
Stars: ✭ 222 (-62.31%)
Mutual labels:  jupyter-notebook, lstm, rnn
Tensorflow Lstm Regression
Sequence prediction using recurrent neural networks(LSTM) with TensorFlow
Stars: ✭ 433 (-26.49%)
Mutual labels:  jupyter-notebook, time-series, lstm
Deeplearning.ai Assignments
Stars: ✭ 268 (-54.5%)
Mutual labels:  jupyter-notebook, lstm, rnn
Load forecasting
Load forcasting on Delhi area electric power load using ARIMA, RNN, LSTM and GRU models
Stars: ✭ 160 (-72.84%)
Mutual labels:  jupyter-notebook, lstm, rnn
Lstm Human Activity Recognition
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier
Stars: ✭ 2,943 (+399.66%)
Mutual labels:  jupyter-notebook, lstm, rnn
Multilabel Timeseries Classification With Lstm
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.
Stars: ✭ 519 (-11.88%)
Mutual labels:  jupyter-notebook, time-series, lstm
Tsai
Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai
Stars: ✭ 407 (-30.9%)
Mutual labels:  jupyter-notebook, time-series, rnn
Poetry Seq2seq
Chinese Poetry Generation
Stars: ✭ 159 (-73.01%)
Mutual labels:  jupyter-notebook, lstm, rnn
Pytorch Sentiment Analysis
Tutorials on getting started with PyTorch and TorchText for sentiment analysis.
Stars: ✭ 3,209 (+444.82%)
Mutual labels:  jupyter-notebook, lstm, rnn
Thesemicolon
This repository contains Ipython notebooks and datasets for the data analytics youtube tutorials on The Semicolon.
Stars: ✭ 345 (-41.43%)
Mutual labels:  jupyter-notebook, lstm, rnn
Linear Attention Recurrent Neural Network
A recurrent attention module consisting of an LSTM cell which can query its own past cell states by the means of windowed multi-head attention. The formulas are derived from the BN-LSTM and the Transformer Network. The LARNN cell with attention can be easily used inside a loop on the cell state, just like any other RNN. (LARNN)
Stars: ✭ 119 (-79.8%)
Mutual labels:  jupyter-notebook, lstm, rnn
Kaggle Web Traffic
1st place solution
Stars: ✭ 1,641 (+178.61%)
Mutual labels:  jupyter-notebook, time-series, rnn

Telemanom (v2.0)

v2.0 updates:

  • Vectorized operations via numpy
  • Object-oriented restructure, improved organization
  • Merge branches into single branch for both processing modes (with/without labels)
  • Update requirements.txt and Dockerfile
  • Updated result output for both modes
  • PEP8 cleanup

Anomaly Detection in Time Series Data Using LSTMs and Automatic Thresholding

License

Telemanom employs vanilla LSTMs using Keras/Tensorflow to identify anomalies in multivariate sensor data. LSTMs are trained to learn normal system behaviors using encoded command information and prior telemetry values. Predictions are generated at each time step and the errors in predictions represent deviations from expected behavior. Telemanom then uses a novel nonparametric, unsupervised approach for thresholding these errors and identifying anomalous sequences of errors.

This repo along with the linked data can be used to re-create the experiments in our 2018 KDD paper, "Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding", which describes the background, methodologies, and experiments in more detail. While the system was originally deployed to monitor spacecraft telemetry, it can be easily adapted to similar problems.

Getting Started

Clone the repo (only available from source currently):

git clone https://github.com/khundman/telemanom.git && cd telemanom

Configure system/modeling parameters in config.yaml file (to recreate experiment from paper, leave as is). For example:

  • train: True if True, a new model will be trained for each input stream. If False (default) existing trained model will be loaded and used to generate predictions
  • predict: True Generate new predictions using models. If False (default), use existing saved predictions in evaluation (useful for tuning error thresholding and skipping prior processing steps)
  • l_s: 250 Determines the number of previous timesteps input to the model at each timestep t (used to generate predictions)

To run via Docker:

docker build -t telemanom .

# rerun experiment detailed in paper or run with your own set of labeled anomlies in 'labeled_anomalies.csv'
docker run telemanom -l labeled_anomalies.csv

# run without labeled anomalies
docker run telemanom

To run with local or virtual environment

From root of repo, curl and unzip data:

curl -O https://s3-us-west-2.amazonaws.com/telemanom/data.zip && unzip data.zip && rm data.zip

Install dependencies using python 3.6+ (recommend using a virtualenv):

pip install -r requirements.txt

Begin processing (from root of repo):

# rerun experiment detailed in paper or run with your own set of labeled anomlies
python example.py -l labeled_anomalies.csv

# run without labeled anomalies
python example.py

A jupyter notebook for evaluating results for a run is at telemanom/result_viewer.ipynb. To launch notebook:

jupyter notebook telemanom/result-viewer.ipynb

Plotly is used to generate interactive inline plots, e.g.:

drawing2

Data

Using your own data

Pre-split training and test sets must be placed in directories named data/train/ and data/test. One .npy file should be generated for each channel or stream (for both train and test) with shape (n_timesteps, n_inputs). The filename should be a unique channel name or ID. The telemetry values being predicted in the test data must be the first feature in the input.

For example, a channel T-1 should have train/test sets named T-1.npy with shapes akin to (4900,61) and (3925, 61), where the number of input dimensions are matching (61). The actual telemetry values should be along the first dimension (4900,1) and (3925,1).

Raw experiment data

The raw data available for download represents real spacecraft telemetry data and anomalies from the Soil Moisture Active Passive satellite (SMAP) and the Curiosity Rover on Mars (MSL). All data has been anonymized with regard to time and all telemetry values are pre-scaled between (-1,1) according to the min/max in the test set. Channel IDs are also anonymized, but the first letter gives indicates the type of channel (P = power, R = radiation, etc.). Model input data also includes one-hot encoded information about commands that were sent or received by specific spacecraft modules in a given time window. No identifying information related to the timing or nature of commands is included in the data. For example:

drawing

This data also includes pre-split test and training data, pre-trained models, predictions, and smoothed errors generated using the default settings in config.yaml. When getting familiar with the repo, running the result-viewer.ipynb notebook to visualize results is useful for developing intuition. The included data also is useful for isolating portions of the system. For example, if you wish to see the effects of changes to the thresholding parameters without having to train new models, you can set Train and Predict to False in config.yaml to use previously generated predictions from prior models.

Anomaly labels and metadata

The anomaly labels and metadata are available in labeled_anomalies.csv, which includes:

  • channel id: anonymized channel id - first letter represents nature of channel (P = power, R = radiation, etc.)
  • spacecraft: spacecraft that generated telemetry stream
  • anomaly_sequences: start and end indices of true anomalies in stream
  • class: the class of anomaly (see paper for discussion)
  • num values: number of telemetry values in each stream

To provide your own labels, use the labeled_anomalies.csv file as a template. The only required fields/columns are channel_id and anomaly_sequences. anomaly_sequences is a list of lists that contain start and end indices of anomalous regions in the test dataset for a channel.

Dataset and performance statistics:

Data

SMAP MSL Total
Total anomaly sequences 69 36 105
Point anomalies (% tot.) 43 (62%) 19 (53%) 62 (59%)
Contextual anomalies (% tot.) 26 (38%) 17 (47%) 43 (41%)
Unique telemetry channels 55 27 82
Unique ISAs 28 19 47
Telemetry values evaluated 429,735 66,709 496,444

Performance (with default params specified in paper)

Spacecraft Precision Recall F_0.5 Score
SMAP 85.5% 85.5% 0.71
Curiosity (MSL) 92.6% 69.4% 0.69
Total 87.5% 80.0% 0.71

Processing

Each time the system is started a unique datetime ID (ex. 2018-05-17_16.28.00) will be used to create the following

  • a results file (in results/) that extends labeled_anomalies.csv to include identified anomalous sequences and related info
  • a data subdirectory containing data files for created models, predictions, and smoothed errors for each channel. A file called params.log is also created that contains parameter settings and logging output during processing.

As mentioned, the jupyter notebook telemanom/result-viewer.ipynb can be used to visualize results for each stream.

Citation

If you use this work, please cite:

  title={Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding},
  author={Hundman, Kyle and Constantinou, Valentino and Laporte, Christopher and Colwell, Ian and Soderstrom, Tom},
  journal={arXiv preprint arXiv:1802.04431},
  year={2018}
}

License

Telemanom is distributed under Apache 2.0 license.

Contact: Kyle Hundman ([email protected])

Contributors

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].