All Projects → kailaix → Adcme.jl

kailaix / Adcme.jl

Licence: mit
Automatic Differentiation Library for Computational and Mathematical Engineering

Programming Languages

julia
2034 projects

Projects that are alternatives of or similar to Adcme.jl

Owl
Owl - OCaml Scientific and Engineering Computing @ http://ocaml.xyz
Stars: ✭ 919 (+766.98%)
Mutual labels:  automatic-differentiation, scientific-computing, optimization
Simpeg
Simulation and Parameter Estimation in Geophysics - A python package for simulation and gradient based parameter estimation in the context of geophysical applications.
Stars: ✭ 283 (+166.98%)
Mutual labels:  scientific-computing, optimization
Rust Autograd
Tensors and differentiable operations (like TensorFlow) in Rust
Stars: ✭ 278 (+162.26%)
Mutual labels:  neural-networks, automatic-differentiation
Geneticalgorithmpython
Source code of PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).
Stars: ✭ 435 (+310.38%)
Mutual labels:  neural-networks, optimization
siconos
Simulation framework for nonsmooth dynamical systems
Stars: ✭ 120 (+13.21%)
Mutual labels:  optimization, scientific-computing
dfogn
DFO-GN: Derivative-Free Optimization using Gauss-Newton
Stars: ✭ 20 (-81.13%)
Mutual labels:  optimization, scientific-computing
Enzyme
High-performance automatic differentiation of LLVM.
Stars: ✭ 418 (+294.34%)
Mutual labels:  automatic-differentiation, scientific-computing
Qml
Introductions to key concepts in quantum machine learning, as well as tutorials and implementations from cutting-edge QML research.
Stars: ✭ 174 (+64.15%)
Mutual labels:  neural-networks, automatic-differentiation
Arraymancer
A fast, ergonomic and portable tensor library in Nim with a deep learning focus for CPU, GPU and embedded devices via OpenMP, Cuda and OpenCL backends
Stars: ✭ 793 (+648.11%)
Mutual labels:  neural-networks, automatic-differentiation
Pennylane
PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network.
Stars: ✭ 800 (+654.72%)
Mutual labels:  automatic-differentiation, optimization
autodiff
A .NET library that provides fast, accurate and automatic differentiation (computes derivative / gradient) of mathematical functions.
Stars: ✭ 69 (-34.91%)
Mutual labels:  optimization, automatic-differentiation
Spirit
Atomistic Spin Simulation Framework
Stars: ✭ 67 (-36.79%)
Mutual labels:  scientific-computing, optimization
dopt
A numerical optimisation and deep learning framework for D.
Stars: ✭ 28 (-73.58%)
Mutual labels:  optimization, automatic-differentiation
Deeplearning.ai Notes
These are my notes which I prepared during deep learning specialization taught by AI guru Andrew NG. I have used diagrams and code snippets from the code whenever needed but following The Honor Code.
Stars: ✭ 262 (+147.17%)
Mutual labels:  neural-networks, optimization
AbstractOperators.jl
Abstract operators for large scale optimization in Julia
Stars: ✭ 26 (-75.47%)
Mutual labels:  optimization, automatic-differentiation
Deepxde
Deep learning library for solving differential equations and more
Stars: ✭ 420 (+296.23%)
Mutual labels:  neural-networks, scientific-computing
Aerosandbox
Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much, much more.
Stars: ✭ 193 (+82.08%)
Mutual labels:  automatic-differentiation, optimization
Autograd.jl
Julia port of the Python autograd package.
Stars: ✭ 147 (+38.68%)
Mutual labels:  neural-networks, automatic-differentiation
Casadi
CasADi is a symbolic framework for numeric optimization implementing automatic differentiation in forward and reverse modes on sparse matrix-valued computational graphs. It supports self-contained C-code generation and interfaces state-of-the-art codes such as SUNDIALS, IPOPT etc. It can be used from C++, Python or Matlab/Octave.
Stars: ✭ 714 (+573.58%)
Mutual labels:  scientific-computing, optimization
Qualia2.0
Qualia is a deep learning framework deeply integrated with automatic differentiation and dynamic graphing with CUDA acceleration. Qualia was built from scratch.
Stars: ✭ 41 (-61.32%)
Mutual labels:  neural-networks, automatic-differentiation

ADCME

Coverage Status

The ADCME library (Automatic Differentiation Library for Computational and Mathematical Engineering) aims at general and scalable inverse modeling in scientific computing with gradient-based optimization techniques. It is built on the deep learning framework, graph-mode TensorFlow, which provides the automatic differentiation and parallel computing backend. The dataflow model adopted by the framework makes it suitable for high performance computing and inverse modeling in scientific computing. The design principles and methodologies are summarized in the slides.

Check out more about slides and videos on ADCME!

Install ADCME and Get Started (Windows, Mac, and Linux) Scientific Machine Learning for Inverse Modeling Solving Inverse Modeling Problems with ADCME ...more on ADCME Youtube Channel!
Alt text Alt text Alt text

Several features of the library are

  • MATLAB-style Syntax. Write A*B for matrix production instead of tf.matmul(A,B).
  • Custom Operators. Implement operators in C/C++ for performance critical parts; incorporate legacy code or specially designed C/C++ code in ADCME; automatic differentiation through implicit schemes and iterative solvers.
  • Numerical Scheme. Easy to implement numerical schemes for solving PDEs.
  • Physics Constrained Learning. Embed neural network into PDEs and solve with any numerical schemes, including implicit and iterative schemes.
  • Static Graphs. Compilation time computational graph optimization; automatic parallelism for your simulation codes.
  • Parallel Computing. Concurrent execution and model/data parallel distributed optimization.
  • Custom Optimizers. Large scale constrained optimization? Use CustomOptimizer to integrate your favorite optimizer. Try out prebuilt Ipopt and NLopt optimizers.
  • Sparse Linear Algebra. Sparse linear algebra library tailored for scientific computing.
  • Inverse Modeling. Many inverse modeling algorithms have been developed and implemented in ADCME, with wide applications in solid mechanics, fluid dynamics, geophysics, and stochastic processes.
  • Finite Element Method. Get AdFem.jl today for finite element simulation and inverse modeling!

Start building your forward and inverse modeling using ADCME today!

Documentation Tutorial Applications

Graph-mode TensorFlow for High Performance Scientific Computing

Static computational graph (graph-mode AD) enables compilation time optimization. Below is a benchmark of common AD software from here. In inverse modeling, we usually have a scalar-valued objective function, so the left panel is most relevant for ADCME.

Installation

  1. Install Julia.

🎉 Support Matrix

Julia≧1.3 GPU Custom Operator
Linux
MacOS
Windows
  1. Install ADCME
using Pkg
Pkg.add("ADCME")

❗ FOR WINDOWS USERS: See the instruction or the video for installation details.

❗ FOR MACOS USERS: See this troubleshooting list for potential installation and compilation problems on Mac.

  1. (Optional) Test ADCME.jl
using Pkg
Pkg.test("ADCME")

See Troubleshooting if you encounter any compilation problems.

  1. (Optional) To enable GPU support, make sure nvcc is available from your environment (e.g., type nvcc in your shell and you should get the location of the executable binary file), and then type
ENV["GPU"] = 1
Pkg.build("ADCME")

You can check the status with using ADCME; gpu_info().

  1. (Optional) Check the health of your installed ADCME and install missing dependencies or fixing incorrect paths.
using ADCME 
doctor()

For manual installation without access to the internet, see here.

Tutorial

Here we present three inverse problem examples. The first one is a parameter estimation problem, the second one is a function inverse problem where the unknown function does not depend on the state variables, and the third one is also a function inverse problem, but the unknown function depends on the state variables.

Parameter Inverse Problem

Consider solving the following problem

where

Assume that we have observed u(0.5)=1, we want to estimate b. In this case, he true value should be b=1.

using LinearAlgebra
using ADCME

n = 101 # number of grid nodes in [0,1]
h = 1/(n-1)
x = LinRange(0,1,n)[2:end-1]

b = Variable(10.0) # we use Variable keyword to mark the unknowns
A = diagm(0=>2/h^2*ones(n-2), -1=>-1/h^2*ones(n-3), 1=>-1/h^2*ones(n-3)) 
B = b*A + I  # I stands for the identity matrix
f = @. 4*(2 + x - x^2) 
u = B\f # solve the equation using built-in linear solver
ue = u[div(n+1,2)] # extract values at x=0.5

loss = (ue-1.0)^2 

# Optimization
sess = Session(); init(sess) 
BFGS!(sess, loss)

println("Estimated b = ", run(sess, b))

Expected output

Estimated b = 0.9995582304494237

The gradients can be obtained very easily. For example, if we want the gradients of loss with respect to b, the following code will create a Tensor for the gradient

julia> gradients(loss, b)
PyObject <tf.Tensor 'gradients_1/Mul_grad/Reshape:0' shape=() dtype=float64>

Function Inverse Problem: Full Field Data

Consider a nonlinear PDE,

where

Here f(x) can be computed from an analytical solution

In this problem, we are given the full field data of u(x) (the discrete value of u(x) is given on a very fine grid) and want to estimate the nonparametric function b(u). We approximate b(u) using a neural network and use the residual minimization method to find the optimal weights and biases of the neural network. The minimization problem is given by

using LinearAlgebra
using ADCME
using PyPlot

n = 101 
h = 1/(n-1)
x = LinRange(0,1,n)|>collect

u = sin.(π*x)
f = @. (1+u^2)/(1+2u^2) * π^2 * u + u 
# `fc` is short for fully connected neural network. 
# Here we create a neural network with 2 hidden layers, and 20 neuron per layer. 
# The default activation function is tanh.
b = squeeze(fc(u[2:end-1], [20,20,1])) 

residual = -b.*(u[3:end]+u[1:end-2]-2u[2:end-1])/h^2 + u[2:end-1] - f[2:end-1]
loss = sum(residual^2)

sess = Session(); init(sess)
BFGS!(sess, loss)

plot(x, (@. (1+x^2)/(1+2*x^2)), label="Reference")
plot(u[2:end-1], run(sess, b), "o", markersize=5., label="Estimated")
legend(); xlabel("\$u\$"); ylabel("\$b(u)\$"); grid("on")

Here we show the estimated coefficient function and the reference one:

Function Inverse Problem: Sparse Data

Now we consider the same problem as above, but only consider we have access to sparse observations. We assume that on the grid only the values of u(x) on every other 5th grid point are observable. We use the physics constrained learning technique and train a neural network surrogate for b(u) by minimizing

Here uᶿ is the solution to the PDE with

We add 1 to the neural network to ensure the initial guess does not result in a singular Jacobian matrix in the Newton Raphson solver.

using LinearAlgebra
using ADCME
using PyPlot

n = 101 
h = 1/(n-1)
x = LinRange(0,1,n)|>collect

u = sin.(π*x)
f = @. (1+u^2)/(1+2u^2) * π^2 * u + u 

# we use a Newton Raphson solver to solve the nonlinear PDE problem 
function residual_and_jac(θ, x)
    nn = squeeze(fc(reshape(x,:,1), [20,20,1], θ)) + 1.0
    u_full = vector(2:n-1, x, n)
    res = -nn.*(u_full[3:end]+u_full[1:end-2]-2u_full[2:end-1])/h^2 + u_full[2:end-1] - f[2:end-1]
    J = gradients(res, x)
    res, J
end
θ = Variable(fc_init([1,20,20,1]))
ADCME.options.newton_raphson.rtol = 1e-4 # relative tolerance
ADCME.options.newton_raphson.tol = 1e-4 # absolute tolerance
ADCME.options.newton_raphson.verbose = true # print details in newton_raphson
u_est = newton_raphson_with_grad(residual_and_jac, constant(zeros(n-2)),θ)
residual = u_est[1:5:end] - u[2:end-1][1:5:end]
loss = sum(residual^2)

b = squeeze(fc(reshape(x,:,1), [20,20,1], θ)) + 1.0
sess = Session(); init(sess)
BFGS!(sess, loss)

figure(figsize=(10,4))
subplot(121)
plot(x, (@. (1+x^2)/(1+2*x^2)), label="Reference")
plot(x, run(sess, b), "o", markersize=5., label="Estimated")
legend(); xlabel("\$u\$"); ylabel("\$b(u)\$"); grid("on")
subplot(122)
plot(x, (@. sin(π*x)), label="Reference")
plot(x[2:end-1], run(sess, u_est), "--", label="Estimated")
plot(x[2:end-1][1:5:end], run(sess, u_est)[1:5:end], "x", markersize=5., label="Data")
legend(); xlabel("\$x\$"); ylabel("\$u\$"); grid("on")

We show the reconstructed b(u) and the solution u computed from b(u). We see that even though the neural network model fits the data very well, b(u) is not the same as the true one. This problem is ubiquitous in inverse modeling, where the unknown may not be unique.

See Applications for more inverse modeling techniques and examples.

Under the Hood: Computational Graph

A static computational graph is automatic constructed for your implementation. The computational graph guides the runtime execution, saves intermediate results, and records data flows dependencies for automatic differentiation. Here we show the computational graph in the parameter inverse problem:

See a detailed tutorial, or a full documentation.

Featured Applications

Constitutive Modeling Seismic Inversion Coupled Two-Phase Flow and Time-lapse FWI Calibrating Jump Diffusion
law law law law

Here are some research papers using ADCME:

  1. Li, Dongzhuo, Kailai Xu, Jerry M. Harris, and Eric Darve. "Coupled Time‐Lapse Full‐Waveform Inversion for Subsurface Flow Problems Using Intrusive Automatic Differentiation." Water Resources Research 56, no. 8 (2020): e2019WR027032.

  2. Xu, Kailai, Alexandre M. Tartakovsky, Jeff Burghardt, and Eric Darve. "Inverse Modeling of Viscoelasticity Materials using Physics Constrained Learning." arXiv preprint arXiv:2005.04384 (2020).

  3. Zhu, Weiqiang, Kailai Xu, Eric Darve, and Gregory C. Beroza. "A General Approach to Seismic Inversion with Automatic Differentiation." arXiv preprint arXiv:2003.06027 (2020).

  4. Xu, K. and Darve, E., 2019. Adversarial Numerical Analysis for Inverse Problems. arXiv preprint arXiv:1910.06936.

  5. Xu, Kailai, Weiqiang Zhu, and Eric Darve. "Distributed Machine Learning for Computational Engineering using MPI." arXiv preprint arXiv:2011.01349 (2020).

  6. Xu, Kailai, and Eric Darve. "Physics constrained learning for data-driven inverse modeling from sparse observations." arXiv preprint arXiv:2002.10521 (2020).

  7. Xu, Kailai, Daniel Z. Huang, and Eric Darve. "Learning constitutive relations using symmetric positive definite neural networks." arXiv preprint arXiv:2004.00265 (2020).

  8. Xu, Kailai, and Eric Darve. "The neural network approach to inverse problems in differential equations." arXiv preprint arXiv:1901.07758 (2019).

  9. Huang, D.Z., Xu, K., Farhat, C. and Darve, E., 2019. Predictive modeling with learned constitutive laws from indirect observations. arXiv preprint arXiv:1905.12530.

Domain specific software based on ADCME

ADSeismic.jl: Inverse Problems in Earthquake Location/Source-Time Function, FWI, Rupture Process

FwiFlow.jl: Seismic Inversion, Two-phase Flow, Coupled seismic and flow equations

AdFem.jl: Inverse Modeling with the Finite Element Method

LICENSE

ADCME.jl is released under MIT License. See License for details.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].