All Projects → CODAIT → Deep Histopath

CODAIT / Deep Histopath

Licence: apache-2.0
A deep learning approach to predicting breast tumor proliferation scores for the TUPAC16 challenge

Projects that are alternatives of or similar to Deep Histopath

Radio
RadIO is a library for data science research of computed tomography imaging
Stars: ✭ 198 (+50%)
Mutual labels:  jupyter-notebook, medical-imaging
Learning Deep Learning
Paper reading notes on Deep Learning and Machine Learning
Stars: ✭ 388 (+193.94%)
Mutual labels:  jupyter-notebook, medical-imaging
Applied Dl 2018
Tel-Aviv Deep Learning Boot-camp: 12 Applied Deep Learning Labs
Stars: ✭ 146 (+10.61%)
Mutual labels:  jupyter-notebook, medical-imaging
Robot Surgery Segmentation
Wining solution and its improvement for MICCAI 2017 Robotic Instrument Segmentation Sub-Challenge
Stars: ✭ 528 (+300%)
Mutual labels:  jupyter-notebook, medical-imaging
Brain Tumor Segmentation Keras
Keras implementation of the multi-channel cascaded architecture introduced in the paper "Brain Tumor Segmentation with Deep Neural Networks"
Stars: ✭ 20 (-84.85%)
Mutual labels:  jupyter-notebook, medical-imaging
Cnn Interpretability
🏥 Visualizing Convolutional Networks for MRI-based Diagnosis of Alzheimer’s Disease
Stars: ✭ 68 (-48.48%)
Mutual labels:  jupyter-notebook, medical-imaging
Cascaded Fcn
Source code for the MICCAI 2016 Paper "Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional NeuralNetworks and 3D Conditional Random Fields"
Stars: ✭ 296 (+124.24%)
Mutual labels:  jupyter-notebook, medical-imaging
Pyradiomics
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks. Support: https://discourse.slicer.org/c/community/radiomics
Stars: ✭ 563 (+326.52%)
Mutual labels:  jupyter-notebook, medical-imaging
Breast cancer classifier
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening
Stars: ✭ 614 (+365.15%)
Mutual labels:  jupyter-notebook, medical-imaging
Pneumonia Detection From Chest X Ray Images With Deep Learning
Detecting Pneumonia in Chest X-ray Images using Convolutional Neural Network and Pretrained Models
Stars: ✭ 64 (-51.52%)
Mutual labels:  jupyter-notebook, medical-imaging
Models
DLTK Model Zoo
Stars: ✭ 101 (-23.48%)
Mutual labels:  jupyter-notebook, medical-imaging
Tensorflow realtime multi Person pose estimation
Multi-Person Pose Estimation project for Tensorflow 2.0 with a small and fast model based on MobilenetV3
Stars: ✭ 129 (-2.27%)
Mutual labels:  jupyter-notebook
Simpsonrecognition
Detect and recognize The Simpsons characters using Keras and Faster R-CNN
Stars: ✭ 131 (-0.76%)
Mutual labels:  jupyter-notebook
Deeplearningframeworks
Demo of running NNs across different frameworks
Stars: ✭ 1,652 (+1151.52%)
Mutual labels:  jupyter-notebook
Rossmann tsa forecasts
Time Series Analysis & Forecasting of Rossmann Sales with Python. EDA, TSA and seasonal decomposition, Forecasting with Prophet and XGboost modeling for regression.
Stars: ✭ 131 (-0.76%)
Mutual labels:  jupyter-notebook
Deep Reinforcement Learning In Trading
Stars: ✭ 129 (-2.27%)
Mutual labels:  jupyter-notebook
Google Colab Cloudtorrent
Colab Notebook Remote torrent client
Stars: ✭ 132 (+0%)
Mutual labels:  jupyter-notebook
Nlp estimator tutorial
Educational material on using the TensorFlow Estimator framework for text classification
Stars: ✭ 131 (-0.76%)
Mutual labels:  jupyter-notebook
3dmm Fitting
Fit 3DMM to front and side face images simultaneously.
Stars: ✭ 131 (-0.76%)
Mutual labels:  jupyter-notebook
Sound localization algorithms
Classical algorithms of sound source localization with beamforming, TDOA and high-resolution spectral estimation.
Stars: ✭ 131 (-0.76%)
Mutual labels:  jupyter-notebook

Predicting Breast Cancer Proliferation Scores with TensorFlow, Keras, and Apache Spark

Note: This project is still a work in progress. There is also an experimental branch with additional files and experiments.

Overview

The Tumor Proliferation Assessment Challenge 2016 (TUPAC16) is a "Grand Challenge" that was created for the 2016 Medical Image Computing and Computer Assisted Intervention (MICCAI 2016) conference. In this challenge, the goal is to develop state-of-the-art algorithms for automatic prediction of tumor proliferation scores from whole-slide histopathology images of breast tumors.

Background

Breast cancer is the leading cause of cancerous death in women in less-developed countries, and is the second leading cause of cancerous deaths in developed countries, accounting for 29% of all cancers in women within the U.S. [1]. Survival rates increase as early detection increases, giving incentive for pathologists and the medical world at large to develop improved methods for even earlier detection [2]. There are many forms of breast cancer including Ductal Carcinoma in Situ (DCIS), Invasive Ductal Carcinoma (IDC), Tubular Carcinoma of the Breast, Medullary Carcinoma of the Breast, Invasive Lobular Carcinoma, Inflammatory Breast Cancer and several others [3]. Within all of these forms of breast cancer, the rate in which breast cancer cells grow (proliferation), is a strong indicator of a patient’s prognosis. Although there are many means of determining the presence of breast cancer, tumor proliferation speed has been proven to help pathologists determine the best treatment for the patient. The most common technique for determining the proliferation speed is through mitotic count (mitotic index) estimates, in which a pathologist counts the dividing cell nuclei in hematoxylin and eosin (H&E) stained slide preparations to determine the number of mitotic bodies. Given this, the pathologist produces a proliferation score of either 1, 2, or 3, ranging from better to worse prognosis [4]. Unfortunately, this approach is known to have reproducibility problems due to the variability in counting, as well as the difficulty in distinguishing between different grades.

References:
[1] http://emedicine.medscape.com/article/1947145-overview#a3
[2] http://emedicine.medscape.com/article/1947145-overview#a7
[3] http://emedicine.medscape.com/article/1954658-overview
[4] http://emedicine.medscape.com/article/1947145-workup#c12

Goal & Approach

In an effort to automate the process of classification, this project aims to develop a large-scale deep learning approach for predicting tumor scores directly from the pixels of whole-slide histopathology images (WSI). Our proposed approach is based on a recent research paper from Stanford [1]. Starting with 500 extremely high-resolution tumor slide images [2] with accompanying score labels, we aim to make use of Apache Spark in a preprocessing step to cut and filter the images into smaller square samples, generating 4.7 million samples for a total of ~7TB of data [3]. We then utilize TensorFlow and Keras to train a deep convolutional neural network on these samples, making use of transfer learning by fine-tuning a modified ResNet50 model [4]. Our model takes as input the pixel values of the individual samples, and is trained to predict the correct tumor score classification for each one. We also explore an alternative approach of first training a mitosis detection model [5] on an auxiliary mitosis dataset, and then applying it to the WSIs, based on an approach from Paeng et al. [6]. Ultimately, we aim to develop a model that is sufficiently stronger than existing approaches for the task of breast cancer tumor proliferation score classification.

References:
[1] https://web.stanford.edu/group/rubinlab/pubs/2243353.pdf
[2] http://tupac.tue-image.nl/node/3
[3] preprocess.py, breastcancer/preprocessing.py
[4] MachineLearning-Keras-ResNet50.ipynb
[5] preprocess_mitoses.py, train_mitoses.py
[6] https://arxiv.org/abs/1612.07180

Approach


Setup (All nodes unless other specified):

  • System Packages:

    • openslide
  • Python packages:

    • Basics
      • pip3 install -U matplotlib numpy pandas scipy jupyter ipython scikit-learn scikit-image openslide-python
    • TensorFlow (only on driver):
      • pip3 install tensorflow-gpu (or pip3 install tensorflow for CPU-only)
    • Keras (bleeding-edge; only on driver):
      • pip3 install git+https://github.com/fchollet/keras.git
  • Spark 2.x (ideally bleeding-edge)

  • Add the following to the data folder (same location on all nodes):

    • training_image_data folder with the training slides.
    • testing_image_data folder with the testing slides.
    • training_ground_truth.csv file containing the tumor & molecular scores for each slide.
    • mitoses folder with the following from the mitosis detection auxiliary dataset:
      • mitoses_test_image_data folder with the folders of testing images
      • mitoses_train_image_data folder with the folders of training images
      • mitoses_train_ground_truth folder with the folders of training csv files
  • Layout:

    - MachineLearning-Keras-ResNet50.ipynb
    - breastcancer/
      - preprocessing.py
      - visualization.py
    - ...
    - data/
      - mitoses
        - mitoses_test_image_data
          - 01
            - 01.tif
          - 02
            - 01.tif
          ...
        - mitoses_train_ground_truth
          - 01
            - 01.csv
            - 02.csv
            ...
          - 02
            - 01.csv
            - 02.csv
            ...
          ...
        - mitoses_train_image_data
          - 01
            - 01.tif
            - 02.tif
            ...
          - 02
            - 01.tif
            - 02.tif
            ...
          ...
      - training_ground_truth.csv
      - training_image_data
        - TUPAC-TR-001.svs
        - TUPAC-TR-002.svs
        - ...
      - testing_image_data
        - TUPAC-TE-001.svs
        - TUPAC-TE-002.svs
        - ...
    - preprocess.py
    - preprocess_mitoses.py
    - train_mitoses.py
    
  • Adjust the Spark settings in $SPARK_HOME/conf/spark-defaults.conf using the following examples, depending on the job being executed:

    • All jobs:

      # Use most of the driver memory.
      spark.driver.memory 70g
      # Remove the max result size constraint.
      spark.driver.maxResultSize 0
      # Increase the message size.
      spark.rpc.message.maxSize 128
      # Extend the network timeout threshold.
      spark.network.timeout 1000s
      # Setup some extra Java options for performance.
      spark.driver.extraJavaOptions -server -Xmn12G
      spark.executor.extraJavaOptions -server -Xmn12G
      # Setup local directories on separate disks for intermediate read/write performance, if running
      # on Spark Standalone clusters.
      spark.local.dirs /disk2/local,/disk3/local,/disk4/local,/disk5/local,/disk6/local,/disk7/local,/disk8/local,/disk9/local,/disk10/local,/disk11/local,/disk12/local
      
    • Preprocessing:

      # Save 1/2 executor memory for Python processes
      spark.executor.memory 50g
      
  • To execute the WSI preprocessing script, use spark-submit as follows (could also use Yarn in client mode with --master yarn --deploy-mode client):

    PYSPARK_PYTHON=python3 spark-submit --master spark://MASTER_URL:7077 preprocess.py
    
  • To execute the mitoses preprocessing script, use the following:

    python3 preprocess_mitoses.py --help
    
  • To execute the mitoses training script, use the following:

    python3 training_mitoses.py --help
    
  • To use the Jupyter notebooks, start up Jupyter like normal with jupyter notebook and run the desired notebook.

Create a Histopath slide “lab” to view the slides (just driver):

  • git clone https://github.com/openslide/openslide-python.git
  • Host locally:
    • python3 path/to/openslide-python/examples/deepzoom/deepzoom_multiserver.py -Q 100 path/to/data/
  • Host on server:
    • python3 path/to/openslide-python/examples/deepzoom/deepzoom_multiserver.py -Q 100 -l HOSTING_URL_HERE path/to/data/
    • Open local browser to HOSTING_URL_HERE:5000.
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].