All Projects → schochastics → edgebundle

schochastics / edgebundle

Licence: Unknown, MIT licenses found Licenses found Unknown LICENSE MIT LICENSE.md
R package implementing edge bundling algorithms

Programming Languages

r
7636 projects
C++
36643 projects - #6 most used programming language

Projects that are alternatives of or similar to edgebundle

Networkit
NetworKit is a growing open-source toolkit for large-scale network analysis.
Stars: ✭ 383 (+283%)
Mutual labels:  graph-algorithms, network-analysis
Depthmapx
depthmapX is a multi-platform Spatial Network Analysis Software
Stars: ✭ 120 (+20%)
Mutual labels:  graph-algorithms, network-analysis
Tidygraph
A tidy API for graph manipulation
Stars: ✭ 398 (+298%)
Mutual labels:  graph-algorithms, network-analysis
Sparkling Graph
SparklingGraph provides easy to use set of features that will give you ability to proces large scala graphs using Spark and GraphX.
Stars: ✭ 139 (+39%)
Mutual labels:  graph-algorithms, network-analysis
Pydata Networkx
A short tutorial on network analysis using Game of Thrones, US Airports and Python!
Stars: ✭ 50 (-50%)
Mutual labels:  graph-algorithms, network-analysis
Graphlayouts
new layout algorithms for network visualizations in R
Stars: ✭ 176 (+76%)
Mutual labels:  graph-algorithms, network-analysis
Pathfinding Visualizer Threejs
A visualizer for pathfinding algorithms in 3D with maze generation, first-person view and device camera input.
Stars: ✭ 209 (+109%)
Mutual labels:  graph-algorithms
nodegraph
NodeGraph - A simple directed graph with visualization UI.
Stars: ✭ 21 (-79%)
Mutual labels:  graph-algorithms
Quiver
A reasonable library for modeling multi-graphs in Scala
Stars: ✭ 195 (+95%)
Mutual labels:  graph-algorithms
Ppnp
PPNP & APPNP models from "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019)
Stars: ✭ 177 (+77%)
Mutual labels:  graph-algorithms
obsidiantools
Obsidian tools - a Python package for analysing an Obsidian.md vault
Stars: ✭ 179 (+79%)
Mutual labels:  network-analysis
HuaweiCodeCraft2020
2020华为软件精英挑战赛
Stars: ✭ 14 (-86%)
Mutual labels:  graph-algorithms
migraph
Tools for multimodal and multilevel network analysis
Stars: ✭ 25 (-75%)
Mutual labels:  network-analysis
Mug
A small Java 8 util library, complementary to Guava (BiStream, Substring, MoreStreams, Parallelizer).
Stars: ✭ 236 (+136%)
Mutual labels:  graph-algorithms
InterviewPrep
A repository containing link of good interview questions
Stars: ✭ 54 (-46%)
Mutual labels:  graph-algorithms
Yfiles For Html Demos
Contains demo sources for the JavaScript diagramming library yFiles for HTML
Stars: ✭ 202 (+102%)
Mutual labels:  graph-algorithms
Advanced-Shortest-Paths-Algorithms
Java Code for Contraction Hierarchies Algorithm, A-Star Algorithm and Bidirectional Dijkstra Algorithm. Tested and Verified Code.
Stars: ✭ 63 (-37%)
Mutual labels:  graph-algorithms
Midas
Go implementation of MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams
Stars: ✭ 180 (+80%)
Mutual labels:  graph-algorithms
spotify-song-recommender
A Spotify song recommendation engine built with the power of graph analytics.
Stars: ✭ 34 (-66%)
Mutual labels:  graph-algorithms
blossom
Edmonds's blossom algorithm for maximum weight matching in undirected graphs
Stars: ✭ 16 (-84%)
Mutual labels:  graph-algorithms

edgebundle

R-CMD-check CRAN status CRAN Downloads

An R package that implements several edge bundling/flow and metro map algorithms. So far it includes

  • Force directed edge bundling
  • Stub bundling (paper)
  • Hammer bundling (python code)
  • Edge-path bundling (paper)
  • TNSS flow map (paper)
  • Multicriteria Metro map layout (paper)

(The API is not very opinionated yet and may change in future releases.)

Installation

The package is available on CRAN.

install.packages("edgebundle")

The developer version can be installed with

# install.packages("remotes")
remotes::install_github("schochastics/edgebundle")

Note that edgebundle imports reticulate and uses a pretty big python library (datashader).

library(edgebundle)
library(igraph)

Edge bundling

The expected input of each edge bundling function is a graph (igraph/network or tbl_graph object) and a node layout.
All functions return a data frame of points along the edges of the network that can be plotted with {{ggplot2}} using geom_path() or geom_bezier() for edge_bundle_stub().

library(igraph)
g <- graph_from_edgelist(
  matrix(c(1,12,2,11,3,10,4,9,5,8,6,7),ncol=2,byrow = T),F)
xy <- cbind(c(rep(0,6),rep(1,6)),c(1:6,1:6))

fbundle <- edge_bundle_force(g,xy,compatibility_threshold = 0.1)
head(fbundle)
#>            x       y     index group
#> 1 0.00000000 1.00000 0.0000000     1
#> 2 0.00611816 1.19977 0.0303030     1
#> 3 0.00987237 1.29767 0.0606061     1
#> 4 0.01929293 1.52427 0.0909091     1
#> 5 0.02790686 1.68643 0.1212121     1
#> 6 0.03440142 1.81285 0.1515152     1

The result can be visualized as follows.

library(ggplot2)

ggplot(fbundle) +
  geom_path(aes(x, y, group = group, col = as.factor(group)), 
            size = 2, show.legend = FALSE) +
  geom_point(data = as.data.frame(xy), aes(V1, V2), size = 5) +
  theme_void()

# simple edge-path bundling example
g <- graph_from_edgelist(matrix(c(1, 2, 1, 6, 1, 4, 2, 3, 3, 4, 4, 5, 5, 6), 
                                ncol = 2, byrow = TRUE), FALSE)
xy <- cbind(c(0, 10, 25, 40, 50, 50), c(0, 15, 25, 15, 0, -10))
res <- edge_bundle_path(g, xy, max_distortion = 2, weight_fac = 2, segments = 50)

ggplot() +
  geom_path(data = res, aes(x, y, group = group, col = as.factor(group)), 
            size = 2, show.legend = FALSE) +
  geom_point(data = as.data.frame(xy), aes(V1, V2), size = 5) +
  scale_color_manual(values = c("grey66", "firebrick3", "firebrick3", rep("grey66", 4))) +
  theme_void()

For edge_bundle_stub(), you need geom_bezier() from the package {{ggforce}}.

library(ggforce)
g <- graph.star(10, "undirected")

xy <- matrix(c(
  0, 0,
  cos(90 * pi / 180), sin(90 * pi / 180),
  cos(80 * pi / 180), sin(80 * pi / 180),
  cos(70 * pi / 180), sin(70 * pi / 180),
  cos(330 * pi / 180), sin(330 * pi / 180),
  cos(320 * pi / 180), sin(320 * pi / 180),
  cos(310 * pi / 180), sin(310 * pi / 180),
  cos(210 * pi / 180), sin(210 * pi / 180),
  cos(200 * pi / 180), sin(200 * pi / 180),
  cos(190 * pi / 180), sin(190 * pi / 180)
), ncol = 2, byrow = TRUE)

sbundle <- edge_bundle_stub(g, xy, beta = 90)

ggplot(sbundle) +
  geom_bezier(aes(x, y, group = group), size = 1.5, col = "grey66") +
  geom_point(data = as.data.frame(xy), aes(V1, V2), size = 5) +
  theme_void()

The typical edge bundling benchmark uses a dataset on us flights, which is included in the package.

g <- us_flights
xy <- cbind(V(g)$longitude, V(g)$latitude)
verts <- data.frame(x = V(g)$longitude, y = V(g)$latitude)

fbundle <- edge_bundle_force(g, xy, compatibility_threshold = 0.6)
sbundle <- edge_bundle_stub(g, xy)
hbundle <- edge_bundle_hammer(g, xy, bw = 0.7, decay = 0.5)
pbundle <- edge_bundle_path(g, xy, max_distortion = 12, weight_fac = 2, segments = 50)

states <- map_data("state")


p1 <- ggplot() +
  geom_polygon(data = states, aes(long, lat, group = group), 
               col = "white", size = 0.1, fill = NA) +
  geom_path(data = fbundle, aes(x, y, group = group), 
            col = "#9d0191", size = 0.05) +
  geom_path(data = fbundle, aes(x, y, group = group), 
            col = "white", size = 0.005) +
  geom_point(data = verts, aes(x, y), 
             col = "#9d0191", size = 0.25) +
  geom_point(data = verts, aes(x, y), 
             col = "white", size = 0.25, alpha = 0.5) +
  geom_point(data = verts[verts$name != "", ], 
             aes(x, y), col = "white", size = 3, alpha = 1) +
  labs(title = "Force Directed Edge Bundling") +
  ggraph::theme_graph(background = "black") +
  theme(plot.title = element_text(color = "white"))

p2 <- ggplot() +
  geom_polygon(data = states, aes(long, lat, group = group), 
               col = "white", size = 0.1, fill = NA) +
  geom_path(data = hbundle, aes(x, y, group = group), 
            col = "#9d0191", size = 0.05) +
  geom_path(data = hbundle, aes(x, y, group = group), 
            col = "white", size = 0.005) +
  geom_point(data = verts, aes(x, y), 
             col = "#9d0191", size = 0.25) +
  geom_point(data = verts, aes(x, y), 
             col = "white", size = 0.25, alpha = 0.5) +
  geom_point(data = verts[verts$name != "", ], aes(x, y), 
             col = "white", size = 3, alpha = 1) +
  labs(title = "Hammer Edge Bundling") +
  ggraph::theme_graph(background = "black") +
  theme(plot.title = element_text(color = "white"))

alpha_fct <- function(x, b = 0.01, p = 5, n = 20) {
  (1 - b) * (2 / (n - 1))^p * abs(x - (n - 1) / 2)^p + b
}

p3 <- ggplot() +
  geom_polygon(data = states, aes(long, lat, group = group), 
               col = "white", size = 0.1, fill = NA) +
  ggforce::geom_bezier(
    data = sbundle, aes(x, y,
      group = group,
      alpha = alpha_fct(..index.. * 20)
    ), n = 20,
    col = "#9d0191", size = 0.1, show.legend = FALSE
  ) +
  ggforce::geom_bezier(
    data = sbundle, aes(x, y,
      group = group,
      alpha = alpha_fct(..index.. * 20)
    ), n = 20,
    col = "white", size = 0.01, show.legend = FALSE
  ) +
  geom_point(data = verts, aes(x, y), 
             col = "#9d0191", size = 0.25) +
  geom_point(data = verts, aes(x, y), 
             col = "white", size = 0.25, alpha = 0.5) +
  geom_point(data = verts[verts$name != "", ], aes(x, y), 
             col = "white", size = 3, alpha = 1) +
  labs(title = "Stub Edge Bundling") +
  ggraph::theme_graph(background = "black") +
  theme(plot.title = element_text(color = "white"))

p4 <- ggplot() +
  geom_polygon(data = states, aes(long, lat, group = group), 
               col = "white", size = 0.1, fill = NA) +
  geom_path(data = pbundle, aes(x, y, group = group), 
            col = "#9d0191", size = 0.05) +
  geom_path(data = pbundle, aes(x, y, group = group), 
            col = "white", size = 0.005) +
  geom_point(data = verts, aes(x, y), 
             col = "#9d0191", size = 0.25) +
  geom_point(data = verts, aes(x, y), 
             col = "white", size = 0.25, alpha = 0.5) +
  geom_point(data = verts[verts$name != "", ], aes(x, y), 
             col = "white", size = 3, alpha = 1) +
  labs(title = "Edge-Path Bundling") +
  ggraph::theme_graph(background = "black") +
  theme(plot.title = element_text(color = "white"))

p1
p2
p3
p4

Flow maps

A flow map is a type of thematic map that represent movements. It may thus be considered a hybrid of a map and a flow diagram. The package so far implements a spatial one-to-many flow layout algorithm using triangulation and approximate Steiner trees.

The function tnss_tree() expects a one-to-many flow network (i.e. a weighted star graph), a layout for the nodes and a set of dummy nodes created with tnss_dummies().

library(ggraph)
xy <- cbind(state.center$x,state.center$y)[!state.name%in%c("Alaska","Hawaii"),]
xy_dummy <- tnss_dummies(xy,4)
gtree <- tnss_tree(cali2010,xy,xy_dummy,4,gamma = 0.9)

ggraph(gtree,"manual",x=V(gtree)$x,y=V(gtree)$y)+
  geom_polygon(data=us,aes(long,lat,group=group),fill="#FDF8C7",col="black")+
  geom_edge_link(aes(width=flow,col=sqrt((xy[root,1]-..x..)^2 + (xy[root,2]-..y..)^2)),
                 lineend = "round",show.legend = FALSE)+
  scale_edge_width(range=c(0.5,4),trans="sqrt")+
  scale_edge_color_gradient(low="#cc0000",high = "#0000cc")+
  geom_node_point(aes(filter=tnss=="leaf"),size=1)+
  geom_node_point(aes(filter=(name=="California")),size=5,shape=22,fill="#cc0000")+
  theme_graph()+
  labs(title="Migration from California (2010) - Flow map")

To smooth the tree, use tnss_smooth(). Note that this changes the object type and you need to visualize it with {{ggplot2}} rather than {{ggraph}}.

smooth_df <- tnss_smooth(gtree,bw=5,n=20)

ggplot()+
  geom_polygon(data=us,aes(long,lat,group=group),fill="#FDF8C7",col="black")+
  geom_path(data = smooth_df,aes(x,y,group=destination,size=flow),
            lineend = "round",col="firebrick3",alpha=1)+
  theme_void()+
  scale_size(range=c(0.5,3),guide = "none")+
  labs(title="Migration from California (2010) - Flow map smoothed")

See this gallery for more examples and code.

Metro Maps

Metro map(-like) graph drawing follow certain rules, such as octilinear edges. The algorithm implemented in the packages uses hill-climbing to optimize several features desired in a metro map. The package includes the metro map of Berlin as an example.

# the algorithm has problems with parallel edges
g <- simplify(metro_berlin)
xy <- cbind(V(g)$lon,V(g)$lat)*100

# the algorithm is not very stable. try playing with the parameters
xy_new <- metro_multicriteria(g,xy,l = 2,gr = 0.5,w = c(100,100,1,1,100),bsize = 35)

# geographic layout
ggraph(metro_berlin,"manual",x=xy[,1],y=xy[,2])+
  geom_edge_link0(aes(col=route_I_counts),edge_width=2,show.legend = FALSE)+
  geom_node_point(shape=21,col="white",fill="black",size=3,stroke=0.5)

#schematic layout
ggraph(metro_berlin,"manual",x=xy_new[,1],y=xy_new[,2])+
  geom_edge_link0(aes(col=route_I_counts),edge_width=2,show.legend = FALSE)+
  geom_node_point(shape=21,col="white",fill="black",size=3,stroke=0.5)+
  theme_graph()+
  labs(title = "Subway Network Berlin")

Disclaimer

Edge bundling is able to produce neat looking network visualizations. However, they do not necessarily enhance readability. After experimenting with several methods, it became quite evident that the algorithms are very sensitive to the parameter settings (and often really only work in the showcase examples…). Consult the original literature (if they even provide any guidelines) or experiment yourself and do not expect any miracles.

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].