All Projects → scikit-learn-contrib → Imbalanced Learn

scikit-learn-contrib / Imbalanced Learn

Licence: mit
A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning

Programming Languages

python
139335 projects - #7 most used programming language
shell
77523 projects

Projects that are alternatives of or similar to Imbalanced Learn

Bayesian Cognitive Modeling In Pymc3
PyMC3 codes of Lee and Wagenmakers' Bayesian Cognitive Modeling - A Pratical Course
Stars: ✭ 93 (-98.34%)
Mutual labels:  data-science, statistics, data-analysis
Deeplearning Notes
Notes for Deep Learning Specialization Courses led by Andrew Ng.
Stars: ✭ 126 (-97.76%)
Mutual labels:  data-science, statistics, data-analysis
Tennis Crystal Ball
Ultimate Tennis Statistics and Tennis Crystal Ball - Tennis Big Data Analysis and Prediction
Stars: ✭ 107 (-98.1%)
Mutual labels:  data-science, statistics, data-analysis
Pycm
Multi-class confusion matrix library in Python
Stars: ✭ 1,076 (-80.84%)
Mutual labels:  data-science, statistics, data-analysis
Tablesaw
Java dataframe and visualization library
Stars: ✭ 2,785 (-50.42%)
Mutual labels:  data-science, statistics, data-analysis
Datacamp
🍧 A repository that contains courses I have taken on DataCamp
Stars: ✭ 69 (-98.77%)
Mutual labels:  data-science, statistics, data-analysis
Sweetviz
Visualize and compare datasets, target values and associations, with one line of code.
Stars: ✭ 1,851 (-67.05%)
Mutual labels:  data-science, statistics, data-analysis
Scikit Learn
scikit-learn: machine learning in Python
Stars: ✭ 48,322 (+760.28%)
Mutual labels:  data-science, statistics, data-analysis
Data Science Live Book
An open source book to learn data science, data analysis and machine learning, suitable for all ages!
Stars: ✭ 193 (-96.56%)
Mutual labels:  data-science, statistics, data-analysis
Collapse
Advanced and Fast Data Transformation in R
Stars: ✭ 184 (-96.72%)
Mutual labels:  data-science, statistics, data-analysis
Pandas Profiling
Create HTML profiling reports from pandas DataFrame objects
Stars: ✭ 8,329 (+48.28%)
Mutual labels:  data-science, statistics, data-analysis
Xlearn
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
Stars: ✭ 2,968 (-47.16%)
Mutual labels:  data-science, statistics, data-analysis
Socrat
A Dynamic Web Toolbox for Interactive Data Processing, Analysis, and Visualization
Stars: ✭ 26 (-99.54%)
Mutual labels:  data-science, statistics, data-analysis
Hyperlearn
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster
Stars: ✭ 1,204 (-78.57%)
Mutual labels:  data-science, statistics, data-analysis
Awesome Python Data Science
Probably the best curated list of data science software in Python.
Stars: ✭ 812 (-85.54%)
Mutual labels:  data-science, statistics, data-analysis
Covid19 Severity Prediction
Extensive and accessible COVID-19 data + forecasting for counties and hospitals. 📈
Stars: ✭ 170 (-96.97%)
Mutual labels:  data-science, statistics, data-analysis
Datascience
Curated list of Python resources for data science.
Stars: ✭ 3,051 (-45.68%)
Mutual labels:  data-science, statistics, data-analysis
Scikit Mobility
scikit-mobility: mobility analysis in Python
Stars: ✭ 339 (-93.96%)
Mutual labels:  data-science, statistics, data-analysis
Probabilistic Programming And Bayesian Methods For Hackers
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)
Stars: ✭ 23,912 (+325.71%)
Mutual labels:  data-science, statistics
Courses
Quiz & Assignment of Coursera
Stars: ✭ 454 (-91.92%)
Mutual labels:  data-science, data-analysis

Azure Codecov CircleCI PythonVersion Pypi Gitter Black

imbalanced-learn

imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-class imbalance. It is compatible with scikit-learn and is part of scikit-learn-contrib projects.

Documentation

Installation documentation, API documentation, and examples can be found on the documentation.

Installation

Dependencies

imbalanced-learn requires the following dependencies:

  • Python (>= 3.7)
  • NumPy (>= 1.14.6)
  • SciPy (>= 1.1.0)
  • Scikit-learn (>= 0.24.2)

Additionally, imbalanced-learn requires the following optional dependencies:

  • Pandas (>= 0.25.0) for dealing with dataframes
  • Tensorflow (>= 2.4.3) for dealing with TensorFlow models
  • Keras (>= 2.4.3) for dealing with Keras models

The examples will requires the following additional dependencies:

  • Matplotlib (>= 2.2.3)
  • Seaborn (>= 0.9.0)

Installation

From PyPi or conda-forge repositories

imbalanced-learn is currently available on the PyPi's repositories and you can install it via pip:

pip install -U imbalanced-learn

The package is release also in Anaconda Cloud platform:

conda install -c conda-forge imbalanced-learn
From source available on GitHub

If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from Github and install all dependencies:

git clone https://github.com/scikit-learn-contrib/imbalanced-learn.git
cd imbalanced-learn
pip install .

Be aware that you can install in developer mode with:

pip install --no-build-isolation --editable .

If you wish to make pull-requests on GitHub, we advise you to install pre-commit:

pip install pre-commit
pre-commit install

Testing

After installation, you can use pytest to run the test suite:

make coverage

Development

The development of this scikit-learn-contrib is in line with the one of the scikit-learn community. Therefore, you can refer to their Development Guide.

About

If you use imbalanced-learn in a scientific publication, we would appreciate citations to the following paper:

@article{JMLR:v18:16-365,
author  = {Guillaume  Lema{{\^i}}tre and Fernando Nogueira and Christos K. Aridas},
title   = {Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning},
journal = {Journal of Machine Learning Research},
year    = {2017},
volume  = {18},
number  = {17},
pages   = {1-5},
url     = {http://jmlr.org/papers/v18/16-365}
}

Most classification algorithms will only perform optimally when the number of samples of each class is roughly the same. Highly skewed datasets, where the minority is heavily outnumbered by one or more classes, have proven to be a challenge while at the same time becoming more and more common.

One way of addressing this issue is by re-sampling the dataset as to offset this imbalance with the hope of arriving at a more robust and fair decision boundary than you would otherwise.

Re-sampling techniques are divided in two categories:
  1. Under-sampling the majority class(es).
  2. Over-sampling the minority class.
  3. Combining over- and under-sampling.
  4. Create ensemble balanced sets.

Below is a list of the methods currently implemented in this module.

  • Under-sampling
    1. Random majority under-sampling with replacement
    2. Extraction of majority-minority Tomek links [1]
    3. Under-sampling with Cluster Centroids
    4. NearMiss-(1 & 2 & 3) [2]
    5. Condensed Nearest Neighbour [3]
    6. One-Sided Selection [4]
    7. Neighboorhood Cleaning Rule [5]
    8. Edited Nearest Neighbours [6]
    9. Instance Hardness Threshold [7]
    10. Repeated Edited Nearest Neighbours [14]
    11. AllKNN [14]
  • Over-sampling
    1. Random minority over-sampling with replacement
    2. SMOTE - Synthetic Minority Over-sampling Technique [8]
    3. SMOTENC - SMOTE for Nominal and Continuous [8]
    4. SMOTEN - SMOTE for Nominal [8]
    5. bSMOTE(1 & 2) - Borderline SMOTE of types 1 and 2 [9]
    6. SVM SMOTE - Support Vectors SMOTE [10]
    7. ADASYN - Adaptive synthetic sampling approach for imbalanced learning [15]
    8. KMeans-SMOTE [17]
    9. ROSE - Random OverSampling Examples [19]
  • Over-sampling followed by under-sampling
    1. SMOTE + Tomek links [12]
    2. SMOTE + ENN [11]
  • Ensemble classifier using samplers internally
    1. Easy Ensemble classifier [13]
    2. Balanced Random Forest [16]
    3. Balanced Bagging
    4. RUSBoost [18]
  • Mini-batch resampling for Keras and Tensorflow

The different algorithms are presented in the sphinx-gallery.

References:

[1]: I. Tomek, “Two modifications of CNN,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 6, pp. 769-772, 1976.
[2]: I. Mani, J. Zhang. “kNN approach to unbalanced data distributions: A case study involving information extraction,” In Proceedings of the Workshop on Learning from Imbalanced Data Sets, pp. 1-7, 2003.
[3]: P. E. Hart, “The condensed nearest neighbor rule,” IEEE Transactions on Information Theory, vol. 14(3), pp. 515-516, 1968.
[4]: M. Kubat, S. Matwin, “Addressing the curse of imbalanced training sets: One-sided selection,” In Proceedings of the 14th International Conference on Machine Learning, vol. 97, pp. 179-186, 1997.
[5]: J. Laurikkala, “Improving identification of difficult small classes by balancing class distribution,” Proceedings of the 8th Conference on Artificial Intelligence in Medicine in Europe, pp. 63-66, 2001.
[6]: D. Wilson, “Asymptotic Properties of Nearest Neighbor Rules Using Edited Data,” IEEE Transactions on Systems, Man, and Cybernetrics, vol. 2(3), pp. 408-421, 1972.
[7]: M. R. Smith, T. Martinez, C. Giraud-Carrier, “An instance level analysis of data complexity,” Machine learning, vol. 95(2), pp. 225-256, 2014.
[8](1, 2, 3) : N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, “SMOTE: Synthetic minority over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321-357, 2002.
[9]: H. Han, W.-Y. Wang, B.-H. Mao, “Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning,” In Proceedings of the 1st International Conference on Intelligent Computing, pp. 878-887, 2005.
[10]: H. M. Nguyen, E. W. Cooper, K. Kamei, “Borderline over-sampling for imbalanced data classification,” In Proceedings of the 5th International Workshop on computational Intelligence and Applications, pp. 24-29, 2009.
[11]: G. E. A. P. A. Batista, R. C. Prati, M. C. Monard, “A study of the behavior of several methods for balancing machine learning training data,” ACM Sigkdd Explorations Newsletter, vol. 6(1), pp. 20-29, 2004.
[12]: G. E. A. P. A. Batista, A. L. C. Bazzan, M. C. Monard, “Balancing training data for automated annotation of keywords: A case study,” In Proceedings of the 2nd Brazilian Workshop on Bioinformatics, pp. 10-18, 2003.
[13]: X.-Y. Liu, J. Wu and Z.-H. Zhou, “Exploratory undersampling for class-imbalance learning,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 39(2), pp. 539-550, 2009.
[14](1, 2) : I. Tomek, “An experiment with the edited nearest-neighbor rule,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 6(6), pp. 448-452, 1976.
[15]: H. He, Y. Bai, E. A. Garcia, S. Li, “ADASYN: Adaptive synthetic sampling approach for imbalanced learning,” In Proceedings of the 5th IEEE International Joint Conference on Neural Networks, pp. 1322-1328, 2008.
[16]: C. Chao, A. Liaw, and L. Breiman. "Using random forest to learn imbalanced data." University of California, Berkeley 110 (2004): 1-12.
[17]: Felix Last, Georgios Douzas, Fernando Bacao, "Oversampling for Imbalanced Learning Based on K-Means and SMOTE"
[18]: Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. "RUSBoost: A hybrid approach to alleviating class imbalance." IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 40.1 (2010): 185-197.
[19]: Menardi, G., Torelli, N.: "Training and assessing classification rules with unbalanced data", Data Mining and Knowledge Discovery, 28, (2014): 92–122
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].