All Projects → wenhwu → Awesome Remote Sensing Change Detection

wenhwu / Awesome Remote Sensing Change Detection

List of datasets, codes, and contests related to remote sensing change detection

Projects that are alternatives of or similar to Awesome Remote Sensing Change Detection

Stanet
official implementation of the spatial-temporal attention neural network (STANet) for remote sensing image change detection
Stars: ✭ 109 (-73.67%)
Mutual labels:  dataset, remote-sensing
Cmu Multimodalsdk
CMU MultimodalSDK is a machine learning platform for development of advanced multimodal models as well as easily accessing and processing multimodal datasets.
Stars: ✭ 388 (-6.28%)
Mutual labels:  dataset
Deeperforensics 1.0
[CVPR 2020] A Large-Scale Dataset for Real-World Face Forgery Detection
Stars: ✭ 338 (-18.36%)
Mutual labels:  dataset
Whitebox Tools
An advanced geospatial data analysis platform
Stars: ✭ 362 (-12.56%)
Mutual labels:  remote-sensing
Eseur Code Data
Code and data used to create the examples in "Evidence-based Software Engineering based on the publicly available data"
Stars: ✭ 340 (-17.87%)
Mutual labels:  dataset
Tfrecord
TFRecord reader for PyTorch
Stars: ✭ 377 (-8.94%)
Mutual labels:  dataset
Whylogs
Profile and monitor your ML data pipeline end-to-end
Stars: ✭ 328 (-20.77%)
Mutual labels:  dataset
Imdb Face
A new large-scale noise-controlled face recognition dataset.
Stars: ✭ 399 (-3.62%)
Mutual labels:  dataset
Comma2k19
A driving dataset for the development and validation of fused pose estimators and mapping algorithms
Stars: ✭ 391 (-5.56%)
Mutual labels:  dataset
Data
Python related videos and metadata powering =>
Stars: ✭ 355 (-14.25%)
Mutual labels:  dataset
Dukemtmc Reid evaluation
ICCV2017 The Person re-ID Evaluation Code for DukeMTMC-reID Dataset (Including Dataset Download)
Stars: ✭ 344 (-16.91%)
Mutual labels:  dataset
Dsprites Dataset
Dataset to assess the disentanglement properties of unsupervised learning methods
Stars: ✭ 340 (-17.87%)
Mutual labels:  dataset
Label Maker
Data Preparation for Satellite Machine Learning
Stars: ✭ 377 (-8.94%)
Mutual labels:  remote-sensing
Pcam
The PatchCamelyon (PCam) deep learning classification benchmark.
Stars: ✭ 340 (-17.87%)
Mutual labels:  dataset
Deepnetsforeo
Deep networks for Earth Observation
Stars: ✭ 393 (-5.07%)
Mutual labels:  remote-sensing
Atsd Use Cases
Axibase Time Series Database: Usage Examples and Research Articles
Stars: ✭ 335 (-19.08%)
Mutual labels:  dataset
Medmnist
[ISBI'21] MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis
Stars: ✭ 338 (-18.36%)
Mutual labels:  dataset
Trashnet
Dataset of images of trash; Torch-based CNN for garbage image classification
Stars: ✭ 368 (-11.11%)
Mutual labels:  dataset
Wuhan 2019 Ncov
2019-nCoV 新冠状病毒 2019-12-01至今国家、省、市三级每日统计数据(支持接口读取)
Stars: ✭ 414 (+0%)
Mutual labels:  dataset
Free Spoken Digit Dataset
A free audio dataset of spoken digits. Think MNIST for audio.
Stars: ✭ 396 (-4.35%)
Mutual labels:  dataset

Awesome Remote Sensing Change Detection Awesome

List of datasets, codes, and contests related to remote sensing change detection.

ReCNN

1 Dateset

1.1 Multispectral

With label

  • 2021.Sentinel-2 Multitemporal Cities Pairs (S2MTCP) dataset
    The S2MTCP dataset contains N = 1520 image pairs, spread over all inhabited continents, with the highest concentration of image pairs in North-America, Europe, and Asia. Bands with a spatial resolution smaller than 10 m are resampled to 10 m and images are cropped to approximately 600x600 pixels. It was created for self-supervised training. Paper: Leenstra et al.2021

  • 2020.Hi-UCD
    Hi-UCD focuses on urban changes and uses ultra-high resolution images to construct multi-temporal semantic changes to achieve refined change detection. The study area of Hi-UCD is a part of Tallinn, the capital of Estonia, with an area of 30km2. There are 359 image pairs in 2017-2018, 386 pairs in 2018-2019, and 548 pairs in 2017-2019, including images, semantic maps, and change maps at different times. Each image has a size of 1024 x 1024 and a spatial resolution of 0.1 m. There are 9 types of objects, including natural objects (water, grassland, woodland, bare land), artificial objects (Building,greenhouse, road, bridge), and others (change-related), basically include all types of urbanland cover in Estonia. Paper: Tian et al.2020

  • 2020.SEmantic Change detectiON Dataset (SECOND)
    SECOND, a well-annotated semantic change detection dataset, which collects 4662 pairs of aerial images from several platforms and sensors. These pairs of images are distributed over the cities such as Hangzhou, Chengdu, and Shanghai. Each image has size 512 x 512 and is annotated at the pixel level. SECOND focus on 6 main land-cover classes, i.e. , non-vegetated ground surface, tree, low vegetation, water, buildings, and playgrounds, that are frequently involved in natural and man-made geographical changes. Paper: Yang et al.2020

  • 2020.Google Dataset
    The images were acquired during the periods between 2006 and 2019, covering the suburb areas of Guangzhou City, China. To facilitate image pair generation, Google Earth service through the BIGEMAP software was adopted to collect 19 season-varying VHR images pairs with three bands of red, green, and blue, a spatial resolution of 0.55 m, and the size ranging from 1006×1168 pixels to 4936×5224 pixels. The annotation is focused on buildings. Paper: Peng et al.2020

  • 2020.LEVIR building Change Detection (LEVIR-CD) Dataset
    LEVIR-CD consists of 637 very high-resolution (VHR, 0.5m/pixel) Google Earth image patch pairs with a size of 1024 × 1024 pixels. These bitemporal images with time span of 5 to 14 years have significant land-use changes, especially the construction growth. LEVIR-CD covers various types of buildings, such as villa residences, tall apartments, small garages and large warehouses. The fully annotated LEVIR-CD contains a total of 31,333 individual change building instances. Paper: Chen et al.2020

  • 2019.High Resolution Semantic Change Detection (HRSCD) Dataset
    This dataset contains 291 coregistered image pairs of RGB aerial images from IGS's BD ORTHO database. Pixel-level change and land cover annotations are provided, generated by rasterizing Urban Atlas 2006, Urban Atlas 2012, and Urban Atlas Change 2006-2012 maps. Paper: Daudt et al.2019

  • 2019.Wuhan multi-temperature scene (MtS-WH) Dataset
    The dataset is mainly used for theoretical research and verification of scene change detection methods. It consists of two large-size VHR images, which have a size of 7200x6000 and are respectively acquired by IKONOS sensors in Feb 2002 and Jun 2009. The images cover the Hanyang District, Wuhan City, China and contain 4 spectral bands (Blue, Green, Red, and Near-Infrared). The spatial resolution of the images is 1m after fusion of the pan and multispectral images by the Gram–Schmidt algorithm. For a discussion of this dataset, please refer to #3. Paper: Wu et al.2017

  • 2018.WHU Building change detection Dataset
    The dataset contains two aerial images (0.2m/pixel, 15354×32507) and provides a change vector, a change raster map, and two corresponding building vectors of these two aerial images. Paper: Ji et al.2018

  • 2018.Synthetic images and real season-varying remote sensing images
    This dataset has three types: synthetic images without objects relative shift, synthetic images with small relative shift of objects, real season-varying remote sensing images (obtained by Google Earth). The real season-varying remote sensing images have 16000 image sets with image size 256x256 pixels (10000 train sets and 3000 test and validation sets) and a spatial resolution of 3 to 100 cm/px. For a discussion of this dataset, please refer to #5. Paper: Lebedev et al.2018

  • 2018.Onera Satellite Change Detection Dataset
    This dataset addresses the issue of detecting changes between satellite images from different dates. It comprises 24 pairs of multispectral images taken from the Sentinel-2 satellites between 2015 and 2018. Locations are picked all over the world, in Brazil, USA, Europe, Middle-East and Asia. For each location, registered pairs of 13-band multispectral satellite images obtained by the Sentinel-2 satellites are provided. Images vary in spatial resolution between 10m, 20m, and 60m. Paper: Daudt et al.2018

  • 2011.The Aerial Imagery Change Detection (AICD) dataset
    This dataset contains synthetic aerial images with artificial changes generated with a rendering engine. It contains 1000 pairs of 800x600 images, each pair consisting of one reference image and one test image, and the 1000 corresponding 800x600 ground truth masks. Paper: Bourdis et al.2011

  • 2008.SZTAKI AirChange Benchmark set
    This dataset contains 13 aerial image pairs of size 952x640 and resolution 1.5m/pixel and binary change masks (drawn by hand). Each record contains a pair of preliminary registered input images and a mask of the 'relevant' changes. The input images are taken with 5, 7 resp. 23 years of time differences. During the generation of the change mask, we have considered the following differences as relevant changes: (a) new built-up regions (b) building operations (c) planting of large group of trees (d) fresh plow-land (e) groundwork before building over. Note that the ground truth does NOT contain change classification, only binary change-no change decision for each pixel. Paper: Benedek et al.2008

Without label

  • Planet Disaster Datasets
    Planet will make PlanetScope imagery available to the public during a select disaster event.

  • DigitalGlobe's Open Data Program
    DigitalGlobe will release open imagery (worldview-3 or other) for select sudden onset major crisis events, including pre-event imagery, post-event imagery, and a crowdsourced damage assessment.

  • French National Institute of Geographical and Forest Information (IGN),BD ORTHO
    The datasets are mosaics of aerial images taken by the French National Institute of Geographical and Forest Information (IGN). They come from a database named BD ORTHO which contains orthorectified aerial images of several regions of France from different years at a resolution of 20 cm or 50 cm per pixel.

  • LINZ DATA SERVICE
    The New Zealand Land Information Services website provides multi-temporal aerial images of some New Zealand cities, all of which have a resolution of over 1m.

  • USGS EarthExplorer
    An epic level database, which can provide multi-temporal,multi-sensor and multi-resolution data.

1.2 Hyperspectral

  • 2018.Hyperspectral Change Detection Dataset
    This dataset can be used to perform change detection techniques in multi-temporal hyperspectral images. It includes two different hyperspectral scenes from the AVIRIS sensor: The Santa Barbara scene, taken on the years 2013 and 2014 with the AVIRIS sensor over the Santa Barbara region (California) whose spatial dimensions are 984 x 740 pixels and includes 224 spectral bands. The Bay Area scene, taken on the years 2013 and 2015 with the AVIRIS sensor surrounding the city of Patterson (California) whose spatial dimensions are 600 x 500 pixels and includes 224 spectral bands. It also includes a hyperspectral scene from the HYPERION sensor: The Hermiston city scene, taken on the years 2004 and 2007 with the HYPERION sensor over the Hermiston City area (Oregon) whose spatial dimensions are 390 x 200 pixels and includes 242 spectral bands. 5 types of changes related to crop transitions are identified in this scene. Paper: López-Fandiño et al.2018

  • 2018.GETNET
    This dataset has two hyperspectral images, which were acquired on May 3, 2013, and December 31, 2013, respectively in Jiangsu province, China. It has a size of 463×241 pixels, with 198 bands available after noisy band removal. In the ground-truth map, white pixels represent changed portions and black pixels mean unchanged parts. Paper: Wang et al.2018

2 Code

2.1 Multispectral

2.1.1 Traditional Method

2.1.2 Deep Learning

2.2 SAR

3.Contest

  • SpaceNet 7: Multi-Temporal Urban Development Challenge (CosmiQ Works, Planet, Aug 2020) In this challenge, participants will identify and track buildings in satellite imagery time series collected over rapidly urbanizing areas. The competition centers around a new open source dataset of Planet satellite imagery mosaics, which will include 24 images (one per month) covering ~100 unique geographies. The dataset will comprise 40,000 km2 of imagery and exhaustive polygon labels of building footprints in the imagery, totaling over 3M individual annotations. Challenge participants will be asked to track building construction over time, thereby directly assessing urbanization.

  • 商汤科技首届AI遥感解译大赛-变化检测赛道 (SenseTime, Aug 2020) 数据集:4662组,分辨率:0.5~3m,规格:512*512,变化类型为6种主要土地性质之间的相互转化:水体、地面、低矮植被、树木、建筑物、运动场。每组数据中,前后时相的两张图片各自对应一张标注图,表示发生变化的区域以及该图片变化区域内各时期的土地性质。第一名的解决方案请详见 LiheYoung/SenseEarth2020-ChangeDetection

  • xView 2 Building Damage Asessment Challenge (DIUx, Nov 2019)
    550k building footprints & 4 damage scale categories, 20 global locations and 7 disaster types (wildfire, landslides, dam collapses, volcanic eruptions, earthquakes/tsunamis, wind, flooding), Worldview-3 imagery (0.3m res.), pre-trained baseline model. Paper: Gupta et al. 2019

  • 遥感图像稀疏表征与智能分析竞赛-变化检测赛道 (Wuhan University,et al. Jul 2019) 本项竞赛以光学遥感图像为处理对象,参赛队伍使用主办方提供的遥感图像进行建筑物变化检测,主办方根据评分标准对变化检测结果进行综合评价。竞赛中将提供两个不同时间获取的大尺度高分辨率遥感图像(包含蓝、绿、红和近红外四个波段),以及图像中变化区域的二值化标注数据集。

  • 广东政务数据创新大赛—智能算法赛 (Alibaba,et al. Nov 2017) 使用2015年和2017年分别获取到的广东省某地的Quickbird卫星影像(包含蓝、绿、红和近红外四个波段),识别出两年之间新增的人工地上建筑物(不包括道路)。获胜团队的解决方案可以在天池官网上找到。

Reference

Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].