All Projects β†’ berkayalan β†’ Data-Science-Tutorials

berkayalan / Data-Science-Tutorials

Licence: other
Python Tutorials for Data Science

Programming Languages

Jupyter Notebook
11667 projects

Projects that are alternatives of or similar to Data-Science-Tutorials

gcf-packs
Library packs for google cloud functions
Stars: ✭ 48 (-53.85%)
Mutual labels:  functions, numpy, pandas
UDACITY-Deep-Learning-Nanodegree-PROJECTS
These are the projects I did on my Udacity Deep Learning Nanodegree 🌟 πŸ’» πŸ’». πŸ’₯ 🌈
Stars: ✭ 18 (-82.69%)
Mutual labels:  numpy, pandas
ml-workflow-automation
Python Machine Learning (ML) project that demonstrates the archetypal ML workflow within a Jupyter notebook, with automated model deployment as a RESTful service on Kubernetes.
Stars: ✭ 44 (-57.69%)
Mutual labels:  numpy, pandas
ESA
Easy SimAuto (ESA): An easy-to-use Power System Analysis Automation Environment atop PowerWorld Simulator Automation Server (SimAuto)
Stars: ✭ 26 (-75%)
Mutual labels:  numpy, pandas
saddle
SADDLE: Scala Data Library
Stars: ✭ 23 (-77.88%)
Mutual labels:  numpy, pandas
onelinerhub
2.5k code solutions with clear explanation @ onelinerhub.com
Stars: ✭ 645 (+520.19%)
Mutual labels:  numpy, pandas
Information-Retrieval
Information Retrieval algorithms developed in python. To follow the blog posts, click on the link:
Stars: ✭ 103 (-0.96%)
Mutual labels:  numpy, pandas
datascienv
datascienv is package that helps you to setup your environment in single line of code with all dependency and it is also include pyforest that provide single line of import all required ml libraries
Stars: ✭ 53 (-49.04%)
Mutual labels:  numpy, pandas
Dimensionality-reduction-and-classification-on-Hyperspectral-Images-Using-Python
In this repository, You can find the files which implement dimensionality reduction on the hyperspectral image(Indian Pines) with classification.
Stars: ✭ 63 (-39.42%)
Mutual labels:  numpy, pandas
spyndex
Awesome Spectral Indices in Python.
Stars: ✭ 56 (-46.15%)
Mutual labels:  numpy, pandas
Algorithmic-Trading
I have been deeply interested in algorithmic trading and systematic trading algorithms. This Repository contains the code of what I have learnt on the way. It starts form some basic simple statistics and will lead up to complex machine learning algorithms.
Stars: ✭ 47 (-54.81%)
Mutual labels:  numpy, pandas
Data-Scientist-In-Python
This repository contains notes and projects of Data scientist track from dataquest course work.
Stars: ✭ 23 (-77.88%)
Mutual labels:  numpy, pandas
introduction to ml with python
λ„μ„œ "[κ°œμ •νŒ] 파이썬 라이브러리λ₯Ό ν™œμš©ν•œ λ¨Έμ‹  λŸ¬λ‹"의 μ£Όν”Όν„° λ…ΈνŠΈλΆκ³Ό μ½”λ“œμž…λ‹ˆλ‹€.
Stars: ✭ 211 (+102.88%)
Mutual labels:  numpy, pandas
datasets
πŸ€— The largest hub of ready-to-use datasets for ML models with fast, easy-to-use and efficient data manipulation tools
Stars: ✭ 13,870 (+13236.54%)
Mutual labels:  numpy, pandas
hamilton
A scalable general purpose micro-framework for defining dataflows. You can use it to create dataframes, numpy matrices, python objects, ML models, etc.
Stars: ✭ 612 (+488.46%)
Mutual labels:  numpy, pandas
Python-for-data-analysis
No description or website provided.
Stars: ✭ 18 (-82.69%)
Mutual labels:  numpy, pandas
Datscan
DatScan is an initiative to build an open-source CMS that will have the capability to solve any problem using data Analysis just with the help of various modules and a vast standardized module library
Stars: ✭ 13 (-87.5%)
Mutual labels:  numpy, pandas
Data-Science-Resources
A guide to getting started with Data Science and ML.
Stars: ✭ 17 (-83.65%)
Mutual labels:  numpy, pandas
valinvest
A value investing tool based on Warren Buffett, Joseph Piotroski and Benjamin Graham thoughts
Stars: ✭ 84 (-19.23%)
Mutual labels:  numpy, pandas
ipython-notebooks
A collection of Jupyter notebooks exploring different datasets.
Stars: ✭ 43 (-58.65%)
Mutual labels:  tutorials, pandas

Data Science Basics, Tutorials and Functions

Python Basics

Introduction to Python

  - Data Types
  - Built-in Functions
  - Type Converting
  - Getting Input from users

Data Structures

  - Lists
  - Tuples
  - Dictionaries
  - Sets

Conditional Statements

  - Boolean Expressions
  - Logical Operators
  - If-Else
  - Grade System User Interaction Example
  - Nested If
  - Odd or Even Example

Loops

  - range()
  - In Operator
  - For Loop
  - Iterating in Strings
  - Iterating in two(2) dimensional Lists
  - continue
  - break
  - zip()
  - Iteration in a Dictionary
  - Iterating pair values
  - While Loop
  - While True

Functions

  - Intro to Functions
  - return()
  - Number of Arguments
  - Arbitrary Arguments, *args
  - Arbitrary Keyword Arguments, **kwargs
  - Giving output with Information
  - Functions that have 2 parameters
  - Predefined Parameters in Functions
  - Local and Global Variables
  - Changing global variables in local area
  - Pass Statement

Nested Functions

Object Oriented Programming

  - What is object oriented programming?
  - Defining Classes
  - Instantiation - Creating objects
  - Class and Instance Attributes
  - Instance(Object) Methods
  - Inheritance
  - Overriding - Extending the Functionality of a Parent Class
  - super() keyword

Numpy

  - What is Numpy?
  - Importing Numpy
  - Numpy arrays and Dimensions
  - Creating Numpy Arrays
      - Zero arrays
      - Ones arrays
      - Full arrays
      - Identify Matrixes
      - Linear Series
      - Distributions arrays - Random
  - Array Indexing
  - Subsets
  - reshape() function
  - Flattening the Arrays
  - Concatenation
  - Splitting
  - Sorting
  - Broadcasting
  - Array Math
  - Dot(Scalar) Product

Pandas

   - What is Pandas?
   - Importing Pandas Library
   - Pandas Series
   - Pandas Dataframes
   - Filtering
   - Adding/Removing rows and columns
   - Merging Dataframes
   - Sorting
   - Aggregation Functions
   - Grouping
   - Apply
   - Pivot Tables
   - Missing values(NaN)
   - Working external files in Pandas(csv,excel)
   - Exploring Netflix Dataset(basic)

Data Preprocessing-Cleaning

  - Data Cleaning / Cleasing
        - Noisy Data
        - Missing Data Analysis
        - Outlier Detection
  - Data Standardization / Feature Scaling
        - Normalization(0-1 Scaling)
        - Standardization(Z Score Scaling)
        - Min-Max Scaling
        - Binary Transformation
  - Variable Transformation
        - Label Encoding
        - One Hot Encoding

Data Visualization

   - Main Libraries for Data Visualisation
   - What is Exploratory data analysis(EDA)?
   - Importing Libraries
   - Matplotlib
       - Pyplot
       - Line Plot
       - Bar Plot
       - Pie Chart
       - Stack Plot
       - Histograms
       - Scatter Plot
       - Time Series Plotting
       - Box Plot 
       - Heatmap
   
   - Seaborn
       - Pyplot
       - Line Plot
       - Bar Plot
       - Cat Plot
       - Histograms
       - Density Plots
       - Pair Plot
       - Scatter Plot
       - Time Series Plotting
       - Box Plot
       - Heatmap
       - Multi-plot Grids
      
   - Pandas
       - Basic Plots
       - Bar Plots
       - Histograms
       - Box Plots
       - Area Plots
       - Scatter Plots
       - Hexagonal Bin Plots
       - Pie Plots
       - Plotting Tools
   
   - Plotnine - ggplot
       - Line Plot
       - Bar Plot
       - Scatter Plot
       - Histograms
       - Density Plot
       - Box Plot
       - Violin Plot
   
   - Plotly
       - Line Plot
       - Bar Plot
       - Pie Charts
       - Bubble Charts
       - Scatter Plots
       - Filled area Plots
       - Gannt Charts
       - Sunburst Charts
       - Tables

Linear Methods for Regression

  - What is Linear Regression?
  - Simple Linear Regression (Theory - Model- Tuning)
  - Multiple Linear Regression (Theory - Model- Tuning)
  - Least-Squares Regression(Ordinary Least Squares) (Theory - Model- Tuning)
  - Principal Component Analysis (PCA) 
  - Principal component regression(PCR) (Theory - Model- Tuning)
  - Shrinkage(Regularization) Methods
      - Partial Least Squares (Theory - Model- Tuning)
      - Ridge Regression(L2 Regularization) (Theory - Model- Tuning)
      - Lasso Regression(L1 Regularization) (Theory - Model- Tuning)
      - Elastic Net Regression (Theory - Model- Tuning)

Non-Linear Models for Regression

  - K - Nearest Neighbors(KNN) (Theory - Model- Tuning)
  - Support Vector Regression(SVR) (Theory - Model- Tuning)
  - Non-Linear Support Vector Regression(SVR) (Theory - Model- Tuning)
  - Regression(Decision) Trees (CART) (Theory - Model- Tuning)
  - Ensemble Learning - Bagged Trees(Bagging) (Theory - Model- Tuning)
  - Ensemble Learning - Random Forests (Theory - Model- Tuning)
  - Gradient Boosting Machines(GBM)  (Theory - Model- Tuning)
  - Light Gradient Boosting Machines(LGBM)  (Theory - Model- Tuning)
  - XGBoost(Extreme Gradient Boosting)  (Theory - Model- Tuning)
  - Catboost  (Theory - Model- Tuning)

Unsupervised Learning - Clustering - Principal Components Analysis(PCA)

  - Clustering
  - K-Means Clustering (Theory - Exploratory Data Analysis - Preprocessing - Model- Tuning)
  - Color - Image Quantization
  - Hierarchical Clustering (Theory - Model)
  - DBSCAN (Density-based spatial clustering) (Theory - Model- Tuning)
  - Principal Components Analysis(PCA) (Theory - Manual Implementation of PCA - Model)   

Classification

  - Classification and Evaluation Metrics
  - Logistic Regression (Theory - Model- Tuning)
  - K - Nearest Neighbors(KNN) (Theory - Model- Tuning)
  - Support Vector Machines(SVC) - Linear Kernel (Theory - Model- Tuning)
  - Support Vector Machines(SVC) - Radial Basis Kernel (Theory - Model- Tuning)
  - Decision Tree Classification (Theory - Model- Tuning)
  - Ensemble Learning - Random Forests Classification (Theory - Model- Tuning)
  - Naive Bayes Classification (Theory - Model)
  - GBM(Gradient Boosting Machines) Classification (Model- Tuning)
  - XGBoost(Extreme Gradient Boosting) Classification (Theory - Model- Tuning)
  - LGBM(Light Gradient Boosting Machines) Classification (Theory - Model- Tuning)

Deep Learning with Pytorch

  - What is Pytorch?
  - Importing Libraries
  - Basics of Pytorch
  - Tensors
  - Math Operations
  - Common Funtions
  - Variables - Autograd
  - Datasets & DataLoaders
  - Common Modules: Optim - nn
  - Extra - Useful Resources

Model Deployment

  - What is Joblib Library?
  - Artificial Neural Networks(ANN) Model
  - Prediction
  - Model Tuning & Validation
  - Saving Model as pickle file
  - Loading Model

Natural Language Proccessing

  - NLP Intuition
  - String Essentials : Creating String
  - String Essentials : Querying of Types
  - String Essentials : Reaching to Indexes
  - String Essentials : First and last characters
  - String Essentials : Splitting Characters
  - String Essentials : Case Conversions in String
  - String Essentials : Capitalizing and titles
  - String Essentials : Cropping Characters
  - String Essentials : Joining Strings
  - String Essentials : Replacing Characters
  - String Essentials : contains
  - Text Preprocessing : Converting string to other data types
  - Text Preprocessing : Case Conversion
  - Text Preprocessing : Handling with Punctuation
  - Text Preprocessing : Handling with Numbers
  - Text Preprocessing : Handling with Stopwords
  - Text Preprocessing : Handling with Frequnecies
  - Text Preprocessing : Tokenization
  - Text Preprocessing : Stemming
  - Text Preprocessing : Lemmatization
  - Object Standardization
  - Linguistic Features : N-Gram
  - Linguistic Features : Part of speech tagging (POS)
  - Linguistic Features : Chunking(Shallow Parsing)
  - Linguistic Features : Noun Chunks
  - Linguistic Features : Named Entity Recognition(NER)
  - Linguistic Features : Visualization in Spacy
  - Text Feature Engineering 
  - Bag of Words
  - Text Visualisation : Bar Plot
  - Text Visualisation : Frequency Visualisation
  - Text Visualisation : WordCloud
  - Transformers, Encoders and Decoders
  - Different Models : Bert, HuggingFace, StanfordNLP, NLTK, LSTM etc.
  - Sentiment Analysis with Logistic Regression
  - Sentiment Analysis with Naive Bayes
  - Vector Space Models
  - Neural Machine Translation
  - Text Summarization
  - Classification with Bert
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].