Python Machine Learning (ML) project that demonstrates the archetypal ML workflow within a Jupyter notebook, with automated model deployment as a RESTful service on Kubernetes.
datascienv is package that helps you to setup your environment in single line of code with all dependency and it is also include pyforest that provide single line of import all required ml libraries
I have been deeply interested in algorithmic trading and systematic trading algorithms. This Repository contains the code of what I have learnt on the way. It starts form some basic simple statistics and will lead up to complex machine learning algorithms.
A scalable general purpose micro-framework for defining dataflows. You can use it to create dataframes, numpy matrices, python objects, ML models, etc.
DatScan is an initiative to build an open-source CMS that will have the capability to solve any problem using data Analysis just with the help of various modules and a vast standardized module library
- Data Types
- Built-in Functions
- Type Converting
- Getting Input from users
Data Structures
- Lists
- Tuples
- Dictionaries
- Sets
Conditional Statements
- Boolean Expressions
- Logical Operators
- If-Else
- Grade System User Interaction Example
- Nested If
- Odd or Even Example
Loops
- range()
- In Operator
- For Loop
- Iterating in Strings
- Iterating in two(2) dimensional Lists
- continue
- break
- zip()
- Iteration in a Dictionary
- Iterating pair values
- While Loop
- While True
Functions
- Intro to Functions
- return()
- Number of Arguments
- Arbitrary Arguments, *args
- Arbitrary Keyword Arguments, **kwargs
- Giving output with Information
- Functions that have 2 parameters
- Predefined Parameters in Functions
- Local and Global Variables
- Changing global variables in local area
- Pass Statement
Nested Functions
Object Oriented Programming
- What is object oriented programming?
- Defining Classes
- Instantiation - Creating objects
- Class and Instance Attributes
- Instance(Object) Methods
- Inheritance
- Overriding - Extending the Functionality of a Parent Class
- super() keyword
Numpy
- What is Numpy?
- Importing Numpy
- Numpy arrays and Dimensions
- Creating Numpy Arrays
- Zero arrays
- Ones arrays
- Full arrays
- Identify Matrixes
- Linear Series
- Distributions arrays - Random
- Array Indexing
- Subsets
- reshape() function
- Flattening the Arrays
- Concatenation
- Splitting
- Sorting
- Broadcasting
- Array Math
- Dot(Scalar) Product
Pandas
- What is Pandas?
- Importing Pandas Library
- Pandas Series
- Pandas Dataframes
- Filtering
- Adding/Removing rows and columns
- Merging Dataframes
- Sorting
- Aggregation Functions
- Grouping
- Apply
- Pivot Tables
- Missing values(NaN)
- Working external files in Pandas(csv,excel)
- Exploring Netflix Dataset(basic)
Data Preprocessing-Cleaning
- Data Cleaning / Cleasing
- Noisy Data
- Missing Data Analysis
- Outlier Detection
- Data Standardization / Feature Scaling
- Normalization(0-1 Scaling)
- Standardization(Z Score Scaling)
- Min-Max Scaling
- Binary Transformation
- Variable Transformation
- Label Encoding
- One Hot Encoding
Data Visualization
- Main Libraries for Data Visualisation
- What is Exploratory data analysis(EDA)?
- Importing Libraries
- Matplotlib
- Pyplot
- Line Plot
- Bar Plot
- Pie Chart
- Stack Plot
- Histograms
- Scatter Plot
- Time Series Plotting
- Box Plot
- Heatmap
- Seaborn
- Pyplot
- Line Plot
- Bar Plot
- Cat Plot
- Histograms
- Density Plots
- Pair Plot
- Scatter Plot
- Time Series Plotting
- Box Plot
- Heatmap
- Multi-plot Grids
- Pandas
- Basic Plots
- Bar Plots
- Histograms
- Box Plots
- Area Plots
- Scatter Plots
- Hexagonal Bin Plots
- Pie Plots
- Plotting Tools
- Plotnine - ggplot
- Line Plot
- Bar Plot
- Scatter Plot
- Histograms
- Density Plot
- Box Plot
- Violin Plot
- Plotly
- Line Plot
- Bar Plot
- Pie Charts
- Bubble Charts
- Scatter Plots
- Filled area Plots
- Gannt Charts
- Sunburst Charts
- Tables
Linear Methods for Regression
- What is Linear Regression?
- Simple Linear Regression (Theory - Model- Tuning)
- Multiple Linear Regression (Theory - Model- Tuning)
- Least-Squares Regression(Ordinary Least Squares) (Theory - Model- Tuning)
- Principal Component Analysis (PCA)
- Principal component regression(PCR) (Theory - Model- Tuning)
- Shrinkage(Regularization) Methods
- Partial Least Squares (Theory - Model- Tuning)
- Ridge Regression(L2 Regularization) (Theory - Model- Tuning)
- Lasso Regression(L1 Regularization) (Theory - Model- Tuning)
- Elastic Net Regression (Theory - Model- Tuning)
- What is Pytorch?
- Importing Libraries
- Basics of Pytorch
- Tensors
- Math Operations
- Common Funtions
- Variables - Autograd
- Datasets & DataLoaders
- Common Modules: Optim - nn
- Extra - Useful Resources
Model Deployment
- What is Joblib Library?
- Artificial Neural Networks(ANN) Model
- Prediction
- Model Tuning & Validation
- Saving Model as pickle file
- Loading Model
Natural Language Proccessing
- NLP Intuition
- String Essentials : Creating String
- String Essentials : Querying of Types
- String Essentials : Reaching to Indexes
- String Essentials : First and last characters
- String Essentials : Splitting Characters
- String Essentials : Case Conversions in String
- String Essentials : Capitalizing and titles
- String Essentials : Cropping Characters
- String Essentials : Joining Strings
- String Essentials : Replacing Characters
- String Essentials : contains
- Text Preprocessing : Converting string to other data types
- Text Preprocessing : Case Conversion
- Text Preprocessing : Handling with Punctuation
- Text Preprocessing : Handling with Numbers
- Text Preprocessing : Handling with Stopwords
- Text Preprocessing : Handling with Frequnecies
- Text Preprocessing : Tokenization
- Text Preprocessing : Stemming
- Text Preprocessing : Lemmatization
- Object Standardization
- Linguistic Features : N-Gram
- Linguistic Features : Part of speech tagging (POS)
- Linguistic Features : Chunking(Shallow Parsing)
- Linguistic Features : Noun Chunks
- Linguistic Features : Named Entity Recognition(NER)
- Linguistic Features : Visualization in Spacy
- Text Feature Engineering
- Bag of Words
- Text Visualisation : Bar Plot
- Text Visualisation : Frequency Visualisation
- Text Visualisation : WordCloud
- Transformers, Encoders and Decoders
- Different Models : Bert, HuggingFace, StanfordNLP, NLTK, LSTM etc.
- Sentiment Analysis with Logistic Regression
- Sentiment Analysis with Naive Bayes
- Vector Space Models
- Neural Machine Translation
- Text Summarization
- Classification with Bert
Note that the project description data, including the texts, logos, images, and/or trademarks,
for each open source project belongs to its rightful owner.
If you wish to add or remove any projects, please contact us at [email protected].