All Projects → yangyanli → Pointcnn

yangyanli / Pointcnn

Licence: other
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

Programming Languages

python
139335 projects - #7 most used programming language

Projects that are alternatives of or similar to Pointcnn

3d Pointcloud
Papers and Datasets about Point Cloud.
Stars: ✭ 179 (-84.02%)
Mutual labels:  autonomous-driving, classification, point-cloud, segmentation
Deepseqslam
The Official Deep Learning Framework for Route-based Place Recognition
Stars: ✭ 49 (-95.62%)
Mutual labels:  robotics, autonomous-driving, deep-neural-networks, convolutional-neural-networks
Constrained attention filter
(ECCV 2020) Tensorflow implementation of A Generic Visualization Approach for Convolutional Neural Networks
Stars: ✭ 36 (-96.79%)
Mutual labels:  autonomous-driving, classification, deep-neural-networks, convolutional-neural-networks
Pointasnl
PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling (CVPR 2020)
Stars: ✭ 159 (-85.8%)
Mutual labels:  classification, point-cloud, segmentation
Paddlex
PaddlePaddle End-to-End Development Toolkit(『飞桨』深度学习全流程开发工具)
Stars: ✭ 3,399 (+203.48%)
Mutual labels:  classification, deep-neural-networks, segmentation
Grid Gcn
Grid-GCN for Fast and Scalable Point Cloud Learning
Stars: ✭ 143 (-87.23%)
Mutual labels:  classification, point-cloud, segmentation
Graph Cnn In 3d Point Cloud Classification
Code for A GRAPH-CNN FOR 3D POINT CLOUD CLASSIFICATION (ICASSP 2018)
Stars: ✭ 206 (-81.61%)
Mutual labels:  point-cloud, pointcloud, convolutional-neural-networks
Pointnet2
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
Stars: ✭ 2,197 (+96.16%)
Mutual labels:  classification, point-cloud, segmentation
3d Bat
3D Bounding Box Annotation Tool (3D-BAT) Point cloud and Image Labeling
Stars: ✭ 179 (-84.02%)
Mutual labels:  autonomous-driving, point-cloud, pointcloud
Point2Sequence
Point2Sequence: Learning the Shape Representation of 3D Point Clouds with an Attention-based Sequence to Sequence Network
Stars: ✭ 34 (-96.96%)
Mutual labels:  point-cloud, classification, segmentation
awesome-lidar
😎 Awesome LIDAR list. The list includes LIDAR manufacturers, datasets, point cloud-processing algorithms, point cloud frameworks and simulators.
Stars: ✭ 217 (-80.62%)
Mutual labels:  point-cloud, autonomous-driving, pointcloud
Pointnet Keras
Keras implementation for Pointnet
Stars: ✭ 110 (-90.18%)
Mutual labels:  classification, point-cloud, segmentation
Pointclouddatasets
3D point cloud datasets in HDF5 format, containing uniformly sampled 2048 points per shape.
Stars: ✭ 80 (-92.86%)
Mutual labels:  classification, point-cloud, segmentation
Dgcnn.pytorch
A PyTorch implementation of Dynamic Graph CNN for Learning on Point Clouds (DGCNN)
Stars: ✭ 153 (-86.34%)
Mutual labels:  classification, point-cloud, segmentation
Deep Atrous Cnn Sentiment
Deep-Atrous-CNN-Text-Network: End-to-end word level model for sentiment analysis and other text classifications
Stars: ✭ 64 (-94.29%)
Mutual labels:  classification, deep-neural-networks, convolutional-neural-networks
Pointnet
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
Stars: ✭ 3,517 (+214.02%)
Mutual labels:  classification, point-cloud, segmentation
Niftynet
[unmaintained] An open-source convolutional neural networks platform for research in medical image analysis and image-guided therapy
Stars: ✭ 1,276 (+13.93%)
Mutual labels:  deep-neural-networks, convolutional-neural-networks, segmentation
Hyperdensenet
This repository contains the code of HyperDenseNet, a hyper-densely connected CNN to segment medical images in multi-modal image scenarios.
Stars: ✭ 124 (-88.93%)
Mutual labels:  deep-neural-networks, convolutional-neural-networks, segmentation
Awesome Robotic Tooling
Tooling for professional robotic development in C++ and Python with a touch of ROS, autonomous driving and aerospace.
Stars: ✭ 1,876 (+67.5%)
Mutual labels:  robotics, autonomous-driving, point-cloud
Cherry Autonomous Racecar
Implementation of the CNN from End to End Learning for Self-Driving Cars on a Nvidia Jetson TX1 using Tensorflow and ROS
Stars: ✭ 294 (-73.75%)
Mutual labels:  robotics, autonomous-driving, convolutional-neural-networks

PointCNN: Convolution On X-Transformed Points

Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen.

Introduction

PointCNN is a simple and general framework for feature learning from point cloud, which refreshed five benchmark records in point cloud processing (as of Jan. 23, 2018), including:

  • classification accuracy on ModelNet40 (91.7%, with 1024 input points only)
  • classification accuracy on ScanNet (77.9%)
  • segmentation part averaged IoU on ShapeNet Parts (86.13%)
  • segmentation mean IoU on S3DIS (65.39%)
  • per voxel labelling accuracy on ScanNet (85.1%)

See our preprint on arXiv (accepted to NeurIPS 2018) for more details.

Pretrained models can be downloaded from here.

Performance on Recent Benchmarks

Revisiting Point Cloud Classification: A New Benchmark Dataset and Classification Model on Real-World Data

PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-level 3D Object Understanding

ABC: A Big CAD Model Dataset For Geometric Deep Learning

Practical Applications

3D cities: Deep Learning in three-dimensional space (from Esri)

PointCNN: replacing 50,000 man hours with AI (from Esri)

More Implementations

We highly welcome issues, rather than emails, for PointCNN related questions.

License

Our code is released under MIT License (see LICENSE file for details).

Code Organization

The core X-Conv and PointCNN architecture are defined in pointcnn.py.

The network/training/data augmentation hyper parameters for classification tasks are defined in pointcnn_cls, for segmentation tasks are defined in pointcnn_seg.

Explanation of X-Conv and X-DeConv Parameters

Take the xconv_params and xdconv_params from shapenet_x8_2048_fps.py for example:

xconv_param_name = ('K', 'D', 'P', 'C', 'links')
xconv_params = [dict(zip(xconv_param_name, xconv_param)) for xconv_param in
                [(8, 1, -1, 32 * x, []),
                 (12, 2, 768, 32 * x, []),
                 (16, 2, 384, 64 * x, []),
                 (16, 6, 128, 128 * x, [])]]

xdconv_param_name = ('K', 'D', 'pts_layer_idx', 'qrs_layer_idx')
xdconv_params = [dict(zip(xdconv_param_name, xdconv_param)) for xdconv_param in
                 [(16, 6, 3, 2),
                  (12, 6, 2, 1),
                  (8, 6, 1, 0),
                  (8, 4, 0, 0)]]

Each element in xconv_params is a tuple of (K, D, P, C, links), where K is the neighborhood size, D is the dilation rate, P is the representative point number in the output (-1 means all input points are output representative points), and C is the output channel number. The links are used for adding DenseNet style links, e.g., [-1, -2] will tell the current layer to receive inputs from the previous two layers. Each element specifies the parameters of one X-Conv layer, and they are stacked to create a deep network.

Each element in xdconv_params is a tuple of (K, D, pts_layer_idx, qrs_layer_idx), where K and D have the same meaning as that in xconv_params, pts_layer_idx specifies the output of which X-Conv layer (from the xconv_params) will be the input of this X-DeConv layer, and qrs_layer_idx specifies the output of which X-Conv layer (from the xconv_params) will be forwarded and fused with the output of this X-DeConv layer. The P and C parameters of this X-DeConv layer is also determined by qrs_layer_idx. Similarly, each element specifies the parameters of one X-DeConv layer, and they are stacked to create a deep network.

PointCNN Usage

PointCNN is implemented and tested with Tensorflow 1.6 in python3 scripts. Tensorflow before 1.5 version is not recommended, because of API. It has dependencies on some python packages such as transforms3d, h5py, plyfile, and maybe more if it complains. Install these packages before the use of PointCNN.

If you can only use Tensorflow 1.5 because of OS factor(UBUNTU 14.04),please modify "isnan()" to "std::nan()" in "/usr/local/lib/python3.5/dist-packages/tensorflow/include/tensorflow/core/framework/numeric_types.h" line 49

Here we list the commands for training/evaluating PointCNN on classification and segmentation tasks on multiple datasets.

  • Classification

    • ModelNet40

    cd data_conversions
    python3 ./download_datasets.py -d modelnet
    cd ../pointcnn_cls
    ./train_val_modelnet.sh -g 0 -x modelnet_x3_l4
    
    • ScanNet

    Please refer to http://www.scan-net.org/ for downloading ScanNet task data and scannet_labelmap, and refer to https://github.com/ScanNet/ScanNet/tree/master/Tasks/Benchmark for downloading ScanNet benchmark files:

    scannet_dataset_download

    |_ data

    |_ scannet_labelmap

    |_ benchmark

    cd ../data/scannet/scannet_dataset_download/
    mv ./scannet_labelmap/scannet-labels.combined.tsv ../benchmark/
    
    #./pointcnn_root
    cd ../../../pointcnn/data_conversions
    python extract_scannet_objs.py -f ../../data/scannet/scannet_dataset_download/data/ -b ../../data/scannet/scannet_dataset_download/benchmark/ -o ../../data/scannet/cls/
    python prepare_scannet_cls_data.py -f ../../data/scannet/cls/
    cd ../pointcnn_cls/
    ./train_val_scannet.sh -g 0 -x scannet_x3_l4
    
    • tu_berlin

    cd data_conversions
    python3 ./download_datasets.py -d tu_berlin
    python3 ./prepare_tu_berlin_data.py -f ../../data/tu_berlin/ -a --create-train-test
    cd ../pointcnn_cls
    ./train_val_tu_berlin.sh -g 0 -x tu_berlin_x3_l4
    
    • quick_draw

    Note that the training/evaluation of quick_draw requires LARGE RAM, as we load all stokes into RAM and converting them into point cloud on-the-fly.

    cd data_conversions
    python3 ./download_datasets.py -d quick_draw
    cd ../pointcnn_cls
    ./train_val_quick_draw.sh -g 0 -x quick_draw_full_x2_l6
    
    • MNIST

    cd data_conversions
    python3 ./download_datasets.py -d mnist
    python3 ./prepare_mnist_data.py -f ../../data/mnist
    cd ../pointcnn_cls
    ./train_val_mnist.sh -g 0 -x mnist_x2_l4
    
    • CIFAR-10

    cd data_conversions
    python3 ./download_datasets.py -d cifar10
    python3 ./prepare_cifar10_data.py
    cd ../pointcnn_cls
    ./train_val_cifar10.sh -g 0 -x cifar10_x3_l4
    
  • Segmentation

    We use farthest point sampling (the implementation from PointNet++) in segmentation tasks. Compile FPS before the training/evaluation:

    cd sampling
    bash tf_sampling_compile.sh
    
    • ShapeNet

    cd data_conversions
    python3 ./download_datasets.py -d shapenet_partseg
    python3 ./prepare_partseg_data.py -f ../../data/shapenet_partseg
    cd ../pointcnn_seg
    ./train_val_shapenet.sh -g 0 -x shapenet_x8_2048_fps
    ./test_shapenet.sh -g 0 -x shapenet_x8_2048_fps -l ../../models/seg/pointcnn_seg_shapenet_x8_2048_fps_xxxx/ckpts/iter-xxxxx -r 10
    cd ../evaluation
    python3 eval_shapenet_seg.py -g ../../data/shapenet_partseg/test_label -p ../../data/shapenet_partseg/test_data_pred_10 -a
    
    • S3DIS

    Please refer to data_conversions for downloading S3DIS, then:

    cd data_conversions
    python3 prepare_s3dis_label.py
    python3 prepare_s3dis_data.py
    python3 prepare_s3dis_filelists.py
    mv S3DIS_files/* ../../data/S3DIS/out_part_rgb/
    ./train_val_s3dis.sh -g 0 -x s3dis_x8_2048_k16_fps -a 1
    ./test_s3dis.sh -g 0 -x s3dis_x8_2048_k16_fps -a 1 -l ../../models/seg/s3dis_x8_2048_fps_k16_xxxx/ckpts/iter-xxxxx -r 4
    cd ../evaluation
    python3 s3dis_merge.py -d <path to *_pred.h5>
    python3 eval_s3dis.py
    

We use a hidden marker file to note when prepare is finished to avoid re-processing. This cache can be invalidated by deleting the markers.

Please notice that these command just for Area 1 (specified by -a 1 option) validation. Results on other Areas can be computed by iterating -a option.

  • ScanNet

Please refer to data_conversions for downloading ScanNet, then:

cd data_conversions
python3 prepare_scannet_seg_data.py
python3 prepare_scannet_seg_filelists.py
cd ../pointcnn_seg
./train_val_scannet.sh -g 0 -x scannet_x8_2048_k8_fps
./test_scannet.sh -g 0 -x scannet_x8_2048_k8_fps -l ../../models/seg/pointcnn_seg_scannet_x8_2048_k8_fps_xxxx/ckpts/iter-xxxxx -r 4
cd ../evaluation
python3 eval_scannet.py -d <path to *_pred.h5> -p <path to scannet_test.pickle>
  • Semantic3D

Please check the free disk space before start, about 900 GB will be required.

cd data_conversions
bash download_semantic3d.sh
bash un7z_semantic3d.sh
python3 prepare_semantic3d_data.py
mkdir ../../data/semantic3d/filelists
python3 prepare_semantic3d_filelists.py
cd ../pointcnn_seg
./train_val_semantic3d.sh -g 0 -x semantic3d_x4_2048_fps
./test_semantic3d.sh -g 0 -x semantic3d_x4_2048_fps -l <path to ckpt>
cd ../evaluation
python3 semantic3d_merge.py -d <path to *_pred.h5> -v <reduced or full>
  • Tensorboard

    If you want to monitor your train step, we recommend you use the following command
    cd <your path>/PointCNN
    tensorboard --logdir=../models/<seg/cls> <--port=6006>
    
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].