Computer Vision Guide📖 This guide is to help you understand the basics of the computerized image and develop computer vision projects with OpenCV. Includes Python, Java, JavaScript, C# and C++ examples.
PliersAutomated feature extraction in Python
Bert AttributeextractionUSING BERT FOR Attribute Extraction in KnowledgeGraph. fine-tuning and feature extraction. 使用基于bert的微调和特征提取方法来进行知识图谱百度百科人物词条属性抽取。
Amazing Feature EngineeringFeature engineering is the process of using domain knowledge to extract features from raw data via data mining techniques. These features can be used to improve the performance of machine learning algorithms. Feature engineering can be considered as applied machine learning itself.
TsfelAn intuitive library to extract features from time series
PiccanteThe hottest High Dynamic Range (HDR) Library
ApkfileAndroid app analysis and feature extraction library
Tf featureextractionConvenient wrapper for TensorFlow feature extraction from pre-trained models using tf.contrib.slim
DgmDirect Graphical Models (DGM) C++ library, a cross-platform Conditional Random Fields library, which is optimized for parallel computing and includes modules for feature extraction, classification and visualization.
Machine Learning Workflow With PythonThis is a comprehensive ML techniques with python: Define the Problem- Specify Inputs & Outputs- Data Collection- Exploratory data analysis -Data Preprocessing- Model Design- Training- Evaluation
Speech signal processing and classificationFront-end speech processing aims at extracting proper features from short- term segments of a speech utterance, known as frames. It is a pre-requisite step toward any pattern recognition problem employing speech or audio (e.g., music). Here, we are interesting in voice disorder classification. That is, to develop two-class classifiers, which can discriminate between utterances of a subject suffering from say vocal fold paralysis and utterances of a healthy subject.The mathematical modeling of the speech production system in humans suggests that an all-pole system function is justified [1-3]. As a consequence, linear prediction coefficients (LPCs) constitute a first choice for modeling the magnitute of the short-term spectrum of speech. LPC-derived cepstral coefficients are guaranteed to discriminate between the system (e.g., vocal tract) contribution and that of the excitation. Taking into account the characteristics of the human ear, the mel-frequency cepstral coefficients (MFCCs) emerged as descriptive features of the speech spectral envelope. Similarly to MFCCs, the perceptual linear prediction coefficients (PLPs) could also be derived. The aforementioned sort of speaking tradi- tional features will be tested against agnostic-features extracted by convolu- tive neural networks (CNNs) (e.g., auto-encoders) [4]. The pattern recognition step will be based on Gaussian Mixture Model based classifiers,K-nearest neighbor classifiers, Bayes classifiers, as well as Deep Neural Networks. The Massachussets Eye and Ear Infirmary Dataset (MEEI-Dataset) [5] will be exploited. At the application level, a library for feature extraction and classification in Python will be developed. Credible publicly available resources will be 1used toward achieving our goal, such as KALDI. Comparisons will be made against [6-8].
IseeR/shiny interface for interactive visualization of data in SummarizedExperiment objects
Color recognition🎨 Color recognition & classification & detection on webcam stream / on video / on single image using K-Nearest Neighbors (KNN) is trained with color histogram features by OpenCV.
Nwaves.NET library for 1D signal processing focused specifically on audio processing
AudioowlFast and simple music and audio analysis using RNN in Python 🕵️♀️ 🥁
Textfeatures👷♂️ A simple package for extracting useful features from character objects 👷♀️
Sourceafis JavaFingerprint recognition engine for Java that takes a pair of human fingerprint images and returns their similarity score. Supports efficient 1:N search.
Msmbuilder🏗 Statistical models for biomolecular dynamics 🏗
ImagefeaturedetectorA C++ Qt GUI desktop program to calculate Harris, FAST, SIFT and SURF image features with OpenCV
NniAn open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
BlurrData transformations for the ML era
Kaggle CompetitionsThere are plenty of courses and tutorials that can help you learn machine learning from scratch but here in GitHub, I want to solve some Kaggle competitions as a comprehensive workflow with python packages. After reading, you can use this workflow to solve other real problems and use it as a template.
ImageclassificationDeep Learning: Image classification, feature visualization and transfer learning with Keras
AsneA sparsity aware and memory efficient implementation of "Attributed Social Network Embedding" (TKDE 2018).
TeneA sparsity aware implementation of "Enhanced Network Embedding with Text Information" (ICPR 2018).
Edge extractionFast and robust algorithm to extract edges in unorganized point clouds
Php MlPHP-ML - Machine Learning library for PHP
Seg MentorTFslim based semantic segmentation models, modular&extensible boutique design
StrugatzkiAlgorithms for matching audio file similarities. Mirror of https://git.iem.at/sciss/Strugatzki
GraphroleAutomatic feature extraction and node role assignment for transfer learning on graphs (ReFeX & RolX)
ProtrComprehensive toolkit for generating various numerical features of protein sequences
Tuna🐟 A streaming ETL for fish
Cbir SystemContent-Based Image Retrieval system (KTH DD2476 Project)
FxtA large scale feature extraction tool for text-based machine learning
Speechpy💬 SpeechPy - A Library for Speech Processing and Recognition: http://speechpy.readthedocs.io/en/latest/
TfidfSimple TF IDF Library
MeydaAudio feature extraction for JavaScript.
TsfreshAutomatic extraction of relevant features from time series:
PyradiomicsOpen-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks. Support: https://discourse.slicer.org/c/community/radiomics
Feature SelectionFeatures selector based on the self selected-algorithm, loss function and validation method
HctsaHighly comparative time-series analysis
DeltapyDeltaPy - Tabular Data Augmentation (by @firmai)
FcgfFully Convolutional Geometric Features: Fast and accurate 3D features for registration and correspondence.
MedpyMedical image processing in Python
SurfboardNovoic's audio feature extraction library
NlpythonThis repository contains the code related to Natural Language Processing using python scripting language. All the codes are related to my book entitled "Python Natural Language Processing"